
MATH 556: MATHEMATICAL STATISTICS I

FAMILIES OF DISTRIBUTIONS: RESULTS AND EXAMPLES

1. Parametric Family: A parametric family, P , of distributions is a collection of probability distribu-
tions indexed by an m-dimensional parameter, θ, P ≡ {PX(.; θ) : θ ∈ Θ ⊆ Rm}, which may be
written using the cdfs FX(.; θ) for θ ∈ Θ. The family is identifiable if, for θ1, θ2 ∈ Θ

FX(x; θ1) = FX(x; θ2) for all x ⇐⇒ θ1 = θ2.

(a) Suppose X ∼ FX(x; θ0) for θ0 ∈ Θ. Suppose θ1 ∈ Θ and consider the likelihood ratio

R(X; θ0, θ1) =
fX(X; θ1)

fX(X; θ0)
=

dFX(X; θ1)

dFX(X; θ0)

say. Then

EX [R(X; θ0, θ1)] =

∫
fX(x; θ1)

fX(x; θ0)
dFX(x; θ0) =

∫
dFX(x; θ1)

dFX(x; θ0)
dFX(x; θ0) =

∫
dFX(x; θ1) = 1.

(b) Score function: Suppose that the pmf/pdf fX(x; θ) is differentiable with respect to θ. The
score function, S(x; θ), is a m× 1 vector with jth element equal to

Sj(x; θ) =
∂

∂θj
log fX(x; θ).

The quantity S(X; θ) = (S1(X; θ), . . . , Sm(X; θ))⊤ is an m-dimensional random variable. Un-
der certain regularity conditions

EX [S(X; θ)] = 0 (m× 1).

Proof: Note first that by rule for differentiating a ‘function of a function’ we have that

∂ log fX(x; θ)

∂θ
=

∂fX(x; θ)

∂θ

1

fX(x; θ)
(m× 1) (1)

Then, provided the differentiation wrt θ and the integration wrt x can be exchanged,

EX [S(X; θ)] =

∫
S(x; θ)fX(x; θ) dx =

∫ {
∂ log fX(x; θ)

∂θ

}
fX(x; θ) dx

=

∫
∂fX(x; θ)

∂θ
dx =

∂

∂θ

{∫
fX(x; θ) dx

}
= 0 (m× 1)

(c) Fisher Information: The Fisher Information, I(θ), is an m × m matrix function of θ defined
as the variance-covariance matrix of the score random variable S, that is

I(θ) = VarX [S(X; θ)] = EX [S(X; θ)S(X; θ)⊤] = [EX [Sj(X; θ)Sk(X; θ)]]jk

Under certain regularity conditions, if the pmf/pdf is twice partially differentiable with
respect to the elements of θ, then if where Ψ(X; θ) is the m × m matrix of second partial
derivatives with (j, k)th element

I(θ) = −EX [Ψ(X; θ)] = −
[
EX

[
∂2

∂θj∂θk
log fX(X; θ)

]]
jk
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Proof: From (b), under regularity conditions∫ {
∂ log fX(x; θ)

∂θ

}
fX(x; θ) dx = 0 (m× 1)

Differentiating again wrt θ⊤ (i.e. differentiate wrt θ and take the transpose), we have∫ {
∂2 log fX(x; θ)

∂θ∂θ⊤
fX(x; θ) +

∂ log fX(x; θ)

∂θ

∂fX(x; θ)

∂θ⊤

}
dx = 0 (m×m)

that is, we have the equality of the two (m×m) matrices

−
∫

∂2 log fX(x; θ)

∂θ∂θ⊤
fX(x; θ) dx =

∫
∂ log fX(x; θ)

∂θ

∂fX(x; θ)

∂θ⊤
dx. (2)

The left-hand side of (2) is −EX [Ψ(X; θ)]. For the right-hand side of (2), using (1), we have∫
∂ log fX(x; θ)

∂θ

∂ log fX(x; θ)

∂θ⊤
fX(x; θ) dx = EX [S(X; θ)S(X; θ)⊤]

and we can conclude that

−EX [Ψ(X; θ)] = EX [S(X; θ)S(X; θ)⊤].

Example : Binomial(n, θ): fX(x; θ) =

(
n

x

)
θx(1− θ)n−x for x ∈ {0, 1, . . . , n}, so that

S(x; θ) =
d

dθ
log fX(x; θ) =

x

θ
− n− x

1− θ
=

x− nθ

θ(1− θ)
.

Hence

EX [S(X; θ)] = EX

[
X − nθ

θ(1− θ)

]
=
EX [X]− nθ

θ(1− θ)
= 0

as X ∼ Binomial(n, θ) yields EX [X] = nθ. For the second derivative

d2

dθ2
log fX(x; θ) = − x

θ2
− n− x

(1− θ)2

so that

I(θ) = −EX

[
d2

dθ2
log fX(X; θ)

]
=
EX [X]

θ2
+

n− EX [X]

(1− θ)2

and as EX [X] = nθ, we have

I(θ) = nθ

θ2
+

n− nθ

(1− θ)2
=

n

θ(1− θ)

Example : Poisson(λ): fX(x;λ) =
e−λλx

x!
, for x ∈ {0, 1, . . .}, so that

S(x;λ) =
d

dλ
log fX(x;λ) =

x

λ
− 1

Hence

EX [S(X;λ)] = EX

[
X

λ
− 1

]
=
EX [X]

λ
− 1 = 0
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as X ∼ Poisson(λ) yields EX [X] = λ. For the second derivative

d2

dλ2
log fX(x;λ) = − x

λ2

so that

I(λ) = −EX

[
d2

dλ2
log fX(X;λ)

]
=
EX [X]

λ2
=

1

λ
.

2. Location-Scale Family: Suppose that f0(x) is a pdf. If µ and σ > 0 are constants then

fX(x;µ, σ) =
1

σ
f0((x− µ)/σ)

is also a pdf, and a member of a location-scale family based on f0.

• if σ = 1 we have a location family: fX(x;µ) = f0(x− µ)

• if µ = 0 we have a scale family: fX(x;σ) = f0(x/σ)/σ

Example : Normal distribution family

f0(x) =

(
1

2π

)1/2

exp

{
−1

2
x2

}

fX(x;µ, σ) =

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}

Example : Exponential distribution family

f0(x) = e−x x > 0

fX(x;µ, σ) =
1

σ
e−(x−µ)/σ x > µ

Note that X is a random variable with pdf fX(x) = fX(x;µ, σ) (the location-scale family member)
if and only if there exists another random variable Z with fZ(z) = f0(z) (the standard member)
such that X = σZ + µ that is, if X is a linear transformation of a standard random variable Z.

3. Exponential Families: A family of pdfs/pmfs is an Exponential Family if it can be expressed

fX(x; θ) = h(x) exp


m∑
j=1

cj(θ)Tj(x)−A(θ)

 = h(x) exp
{
c(θ)⊤T(x)−A(θ)

}
for all x ∈ R, where θ ∈ Θ is a l-dimensional parameter vector (initially we take l = m).

• h(x) ≥ 0 is a function that does not depend on θ

• A(θ) is a function that does not depend on x

• T(x) = (T1(x), . . . , Tm(x))⊤ is a vector of real-valued functions that do not depend on θ.

• c(θ) = (c1(θ), . . . , cm(θ))⊤ is a vector of real-valued functions that do not depend on x.
• The support of fX(x; θ) does not depend on θ.
• The family is termed natural if m = 1 and T1(x) = x.
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Example : Binomial(n, θ) for 0 < θ < 1

For x ∈ {0, 1, . . . , n} ≡ X,

f(x; θ) =

(
n

x

)
θx(1− θ)n−x =

(
n

x

)
(1− θ)n

(
θ

1− θ

)x

=

(
n

x

)
exp

{
log

(
θ

1− θ

)
x− n log(1− θ)

}
• m = 1

• h(x) = 1X(x)

(
n

x

)
.

• A(θ) = n log(1− θ)

• T1(x) = x

• c1(θ) = log(θ/(1− θ)) = log θ − log(1− θ)

Example : Normal(µ, σ2)

For x ∈ R,

fX(x;µ, σ2) =

(
1

2πσ2

)1/2

exp

{
− 1

2σ2
(x− µ)2

}
=

(
1

2π

)1/2

exp

{
− x2

2σ2
+

µx

σ2
− 1

2
log σ2 − µ2

2σ2

}
• m = 2, θ = (µ, σ2)⊤

• h(x) = 1/
√
2π

• A(θ) = A(µ, σ2) = (log σ2 + µ2/σ2)/2

• T1(x) = −x2/2, T2(x) = x

• c1(θ) = 1/σ2, c2(θ) = µ/σ2

Example : Suppose, for θ > 0

fX(x; θ) = 1(θ,∞)
1

θ
exp

{
1− x

θ

}
As the support of fX(x; θ) depends on θ so this is not an Exponential Family distribution.

(a) Parameterization: We can reparameterize from θ to η = (η1, . . . , ηm)⊤ by setting ηj = cj(θ)
for each j, and write

fX(x; η) = h(x) exp


m∑
j=1

ηjTj(x)−K(η)

 = h(x) exp
{
η⊤T(x)−K(η)

}
.

η is termed the natural or canonical parameter and K(η) = A(c−1(η)).
(b) Parameter space: Let H be the region of Rm defined by

H ≡
{
η :

∫ ∞

−∞
h(x) exp

{
η⊤T(x)

}
dx < ∞

}
H is termed the natural parameter space. For η ∈ H, we must have

exp{K(η)} =

∫ ∞

−∞
h(x) exp

{
η⊤T(x)

}
dx
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It can be shown that H is a convex set, that is, for 0 ≤ λ ≤ 1,

η1, η2 ∈ H =⇒ λη1 + (1− λ)η2 ∈ H.

Note that
HΘ =

{
c(θ) = (c1(θ), . . . , cm(θ))⊤ : θ ∈ Θ

}
⊆ H.

HΘ can be considered the natural parameter space induced by Θ

Example : Binomial(n, θ)

η = log

(
θ

1− θ

)
⇐⇒ θ =

eη

1 + eη

so that

fX(x; η) =

{(
n

x

)
1{0,1,...,n}(x)

}
exp{ηx− n log(1 + eη)}.

Natural parameter space:∫ ∞

−∞
h(x) exp

{
η⊤T(x)

}
dx =

n∑
x=0

(
n

x

)
exp {ηx} < ∞ ∀ η ∴ H ≡ R.

Example : Normal(µ, σ2)

η = (η1, η2)
⊤ = (1/σ2, µ/σ2)⊤

so that

fX(x; η) =
( η1
2π

)1/2
exp

{
− η22
2η1

}
exp

{
−η1x

2

2
+ η2x

}
Natural parameter space: this density will be integrable with respect to x if and only if
η1 > 0, so H ≡ R+ × R.

(c) Regular Exponential Family: The family is termed regular if
(i) H ≡ HΘ.

(ii) In the natural parameterization, neither the ηj nor the Tj(x) satisfy linearity constraints.
(iii) H is an open set in Rm.
If only (i) and (ii) hold, the exponential family is termed full. The family is termed curved if
dim(θ) = l < m

(d) Moments for the Exponential Family: If

fX(x; θ) = h(x) exp


m∑
j=1

cj(θ)Tj(x)−A(θ)


then, for l = 1, . . . ,m,

Sl(x; θ) =
∂

∂θl
log fX(x; θ) =

m∑
j=1

∂cj(θ)

∂θl
Tj(x)−

∂A(θ)

∂θl
=

m∑
j=1

ċjl(θ)Tj(x)− Ȧl(θ)

say. But, for each l, EX [Sl(X; θ)] = 0, so therefore, for l = 1, . . . ,m,

EX

 m∑
j=1

ċjl(θ)Tj(X)

 = Ȧl(θ).
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By a similar calculation

VarX

 m∑
j=1

ċjl(θ)Tj(X)

 = Äll(θ)− EX

 m∑
j=1

c̈jll(θ)Tj(X)


where

Äll(θ) =
∂2A(θ)

∂θ2l
c̈jll(θ) =

∂2cj(θ)

∂θ2l

Note that in the natural (canonical) parameterization

log fX(x; η) = log h(x) +

m∑
j=1

ηjTj(x)−K(η)

so that, using the arguments above for l = 1, . . . ,m,

EX [Tl(X)] = K̇l(θ) VarX [Tl(X)] = K̈ll(θ)

(e) Independent random variables from the Exponential Family
Suppose that X1, . . . , Xn are independent and identically distributed rvs, with pmf or pdf
fX(x; θ) in the Exponential Family. Then the joint pmf/pdf for X = (X1, . . . , Xn)

⊤ is

n∏
i=1

fX(xi; θ) =
n∏

i=1

h(xi) exp


m∑
j=1

cj(θ)Tj(xi)−A(θ)

 = H(x) exp


m∑
j=1

cj(θ)Tj(x)− nA(θ)


where

H(x) =

n∏
i=1

h(xi) Tj(x) =

n∑
i=1

Tj(xi).

The random variables Tj(x), j = 1, . . . ,m are termed sufficient statistics.

(f) Alternative construction of the Exponential Family Suppose that f0(x) is a pmf/pdf with
corresponding mgf M0(t) (presumed to exist in a neighbourhood of zero), so that

M0(t) =

∫
etxf0(x) dx = exp{K0(t)}

and K0(t) = logM0(t) is the cumulant generating function. If f0(x) = exp{g0(x)}, we have

exp{K0(t)} = M0(t) =

∫
etxeg0(x) dx =

∫
etx+g0(x) dx.

Thus, for all t for which M0(t) exists,

fX(x; t) = exp{tx+ g0(x)−K0(t)} = f0(x) exp{tx−K0(t)}

is a valid pdf. If we set t = η, h(x) = f0(x) = exp{g0(x)} then

fX(x; η) = h(x) exp{ηx−K0(η)}

and we see that fX(x; η) is an exponential family member with natural parameter η. The
pmf/pdf fX(x; t) is termed the exponential tilting of f0(x), with expectation and variance
K̇0(η) and K̈0(η) respectively. Note further that for t small enough,

MX(t) =

∫
etxh(x) exp {ηx−K0(η)} dx = exp{−K0(η)}

∫
h(x) exp {(η + t)x} dx

= exp{K0(η + t)−K0(η)}.
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(g) The Exponential Dispersion Model: Consider the model

f(x; θ, ϕ) = exp

d(x, ϕ) +
1

r(ϕ)

m∑
j=1

cj(θ)Tj(x)−
A(θ)

r(ϕ)


where r(ϕ) > 0 is a function of dispersion parameter ϕ > 0.

In this model, using the previous results, we see that the expectation is unchanged com-
pared to the Exponential Family model by the presence of the term r(ϕ), but the variance
is modified by a factor of 1/r(ϕ). Thus the exponential dispersion model allows separate
modelling of mean and variance.

Example : Binomial(n, θ)

fX(x; θ) =

(
n

x

)
1{0,1,...,n}(x) exp

{
log

(
θ

1− θ

)
x− n log(1− θ)

}
.

Let Y = X/n, so that

fY (y; θ, ϕ) =

(
1/ϕ

y/ϕ

)
1{0,ϕ,2ϕ,...,1}(y/ϕ) exp

{
1

ϕ

[
y log

(
θ

1− θ

)
− log(1− θ)

]}
where ϕ = 1/n. Note that EY [Y ] = θ = µ say, and

VarY [Y ] = ϕθ(1− θ) = ϕV (µ)

where V (µ) = µ(1− µ) is the variance function.

4. Convolution Families: The convolution of functions g and h, written g ◦ h, is defined by

g ◦ h(y) =
∫ ∞

−∞
g(x)h(y − x) dx.

Now if X1 and X2 are independent random variables with marginal pdfs fX1 and fX2 respec-
tively, then the random variable Y = X1 +X2 has a pdf that can be determined using the multi-
variate transformation result. If we use dummy variable Z = X1, then

Z = X1

Y = X1 +X2

}
⇐⇒

{
X1 = Z

X2 = Y − Z

which is a transformation with Jacobian 1. Thus

fY (y) =

∫ ∞

−∞
fZ,Y (z, y) dz =

∫ ∞

−∞
fX1,X2(z, y − z) dz =

∫ ∞

−∞
fX1(x)fX2(y − x) dx

so we can see that the pdf of Y is computed as the convolution of fX1 and fX2 .

A family of distributions, F , is closed under convolution if

f1, f2 ∈ F =⇒ f1 ◦ f2 ∈ F

For independent random variables X1 and X2 with pdfs f1 and f2 in a family F , closure under
convolution implies that the random variable Y = X1 +X2 also has a pdf in F .

This concept is related to the idea of infinite divisibility, decomposibility, and self decomposibility.
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• Infinite Divisibility : A probability distribution for rv X is infinitely divisible if, for all
positive integers n, there exists a sequence of independent and identically distributed rvs
Zn1, . . . , Znn such that

X
d
= Zn =

n∑
j=1

Znj

that is, the characteristic function (cf) of X can be written

φX(t) = {φZ(t)}n

for some other cf φZ .

• Decomposability : A probability distribution for rv X is decomposable if

φX(t) = φX1(t)φX2(t)

for two cfs φX1 and φX2 so that
X

d
= X1 +X2

where X1 and X2 are independent rvs with cfs φX1 and φX2 .

• Self-Decomposability : A probability distribution for rv X is self-decomposable if for all c,
0 < c < 1,

φX(t) = φX(ct)φX1(t)

for cf φX1 so that
X

d
= cX +X1

where X and X1 are independent rvs with cf φX and φX1 respectively.

5. Hierarchical Models: A hierarchical model is a model constructed by considering a series of distri-
butions at different levels of a “hierarchy” that together, after marginalization, combine to yield
the distribution of the observable quantities.

Example : A three-level model

LEVEL 3 : λ > 0 Fixed parameter

LEVEL 2 : N ∼ Poisson(λ)

LEVEL 1 : X|N = n, θ ∼ Binomial(n, θ)

Then the marginal pmf for X is given by

fX(x; θ, λ) =
∞∑
n=0

fX|N (x|n; θ, λ)fN (n;λ).

By elementary calculation, we see that X ∼ Poisson(λθ)

fX(x; θ, λ) =
(λθ)xe−λθ

x!
x = 0, 1, . . . .

Example : A three-level model

LEVEL 3 : α, β > 0 Fixed parameters

LEVEL 2 : Y ∼ Gamma(α, β)

LEVEL 1 : X|Y = y ∼ Poisson(y)
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Then the marginal pdf for X is given by

fX(x;α, β) =

∫ ∞

0
fX|Y (x|y)fY (y;α, β) dy.

A general K-level hierarchical model can be specified in terms of K vector random variables:

LEVEL K : XK = (XK1, . . . , XKnK
)⊤

... :
...

LEVEL 1 : X1 = (X11, . . . , X1n1)
⊤

The hierarchical model specifies the joint distribution as

fX1,...,XK
(x1, . . . ,xK) = fXK

(xK)

K−1∏
k=1

fXk|Xk+1
(xk|xk+1)

where

fXk|Xk+1
(xk|xk+1) =

nk∏
j=1

fk(xkj |xk+1)

that is, at level k in the hierarchy, the random variables are taken to be conditionally independent
given the values of variables at level k + 1. The uppermost level, Level K, can be taken to be a
degenerate model, with mass function equal to 1 at a set of fixed values.

Example : A three-level model

Consider the three-level hierarchical model:

LEVEL 3 : θ, τ2 > 0 Fixed parameters

LEVEL 2 : M1, . . . ,ML ∼ Normal(θ, τ2) Independent

LEVEL 1 : For l = 1, . . . , L : Xl1, . . . , Xlnl
|Ml = ml ∼ Normal(ml, 1)

where all the Xlj are conditionally independent given M1, . . . ,ML

For random variables X,Y and Z, we write X ⊥ Y |Z if X and Y are conditionally independent
given Z, so that in the above model Xl1j1 ⊥ Xl2j2 |M1, . . . ,ML for all l1, j1, l2, j2.

(i) Finite Mixture Models

LEVEL 3 : L ≥ 1 (integer), π1, . . . , πl with 0 ≤ πl ≤ 1 and
L∑
l=1

πl = 1, and θ1, . . . , θL

LEVEL 2 : X ∼ fX(x;π, L) with X ≡ {1, 2, . . . , L} such that PX [X = l] = πl

LEVEL 1 : Y |X = l ∼ fl(y; θl)

where fl is some pmf or pdf with parameters θl. Then

fY (y;π, θ, L) =

L∑
l=1

fY |X(y|x; θl)fX(x;πl) =

L∑
l=1

fl(y; θl)πl

This is a finite mixture distribution: the observed Y are drawn from L distinct sub-populations
characterized by pmf/pdf f1, . . . , fL and parameters θ1, . . . , θL, with sub-population pro-
portions π1, . . . , πL.
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(ii) Random Sums

LEVEL 3 : θ, ϕ (fixed parameters)

LEVEL 2 : X ∼ fX(x;ϕ) with X ≡ {0, 1, 2, . . .}

LEVEL 1 : Y1, . . . , Yn|X = x ∼ fY (y; θ) (independent), and S =

x∑
i=1

Yi

Then, by the law of iterated expectation,

MS(t) = ES

[
etS

]
= EX

[
ES|X

[
etS

∣∣X]]
= EX

[
EY|X

[
exp

{
t

X∑
i=1

Yi

}∣∣∣∣X
]]

= EX

[
{MY (t)}X

]
= GX(MY (t))

where GX is the factorial mgf (or pgf ) for X defined in a neighbourhood (1 − h, 1 + h) of 1
for some h > 0 as

GX(t) = MX(log t) = EX [tX ] t ∈ (1− h, 1 + h).

By a similar calculation,
GS(t) = GX(GY (t)).

For example, if X ∼ Poisson(ϕ), then

GS(t) = exp {ϕ(GY (t)− 1)}

is the pgf of S. Expanding the pgf as a power series in t yields the pmf of S.

(iii) Location-Scale Mixtures

LEVEL 3 : θ Fixed parameters

LEVEL 2 : M,V ∼ fM,V (m, v; θ)

LEVEL 1 : Y |M = m,V = v ∼ fY |M,V (y|m, v)

where

fY |M,V (y|m, v) =
1

v
f

(
y −m

v

)
that is a location-scale family distribution, mixed over different location and scale parame-
ters with mixing distribution fM,V .

Example : Scale Mixtures of Normal Distributions

LEVEL 3 : θ

LEVEL 2 : V ∼ fV (v; θ)

LEVEL 1 : Y |V = v ∼ fY |V (y|v) ≡ Normal(0, g(v))

for some positive function g. For example, if

Y |V = v ∼ Normal(0, v−1) V ∼ Gamma (1/2, 1/2)

then by elementary calculations, we find that

fY (y) =
1

π

1

1 + y2
y ∈ R ∴ Y ∼ Cauchy.
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The scale mixture of normal distributions family includes the Student, Double Exponential
and Logistic as special cases.

Moments of location-scale mixtures can be computed using the law of iterated expectation.
The location-scale mixture construction allows the modelling of

• skewness through the mixture over different locations

• kurtosis through the mixture over different scales

Example : Location-Scale Mixtures of Normal Distributions

Suppose M and V are independent, with

M ∼ Exponential(1/2) V ∼ Gamma(2, 1/2)

and
Y |M = m,V = v ∼ Normal(m, 1/v)

Then the marginal distribution of Y is given by

fY (y) =

∫ ∞

0

∫ ∞

0
fY |M,V (y|m, v)fM (m)fV (v) dm dv

which can most readily be examined by simulation. The figure below depicts a histogram
of 10000 values simulated from the model, and demonstrates the skewness of the marginal
of Y .
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