Math 556: Mathematical Statistics I
 MULTIVARIATE DISTRIBUTION CALCULATIONS

Example 1: Let X_{1} and X_{2} be discrete rvs each with range $\{1,2,3, \ldots\}$ and joint mass function

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{c}{\left(x_{1}+x_{2}-1\right)\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+1\right)} \quad x_{1}, x_{2}=1,2,3, \ldots
$$

and zero otherwise. The marginal mass function for X is given by

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}=-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\sum_{x_{2}=1}^{\infty} \frac{c}{\left(x_{1}+x_{2}-1\right)\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+1\right)} \\
& =\sum_{x_{2}=1}^{\infty} \frac{c}{2}\left[\frac{1}{\left(x_{1}+x_{2}-1\right)\left(x_{1}+x_{2}\right)}-\frac{1}{\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+1\right)}\right] \\
& =\frac{c}{2} \frac{1}{x_{1}\left(x_{1}+1\right)}
\end{aligned}
$$

as all other terms cancel, and to calculate c, note that

$$
\sum_{x_{1}=-\infty}^{\infty} f_{X_{1}}\left(x_{1}\right)=\sum_{x_{1}=1}^{\infty} \frac{c}{2} \frac{1}{x_{1}\left(x_{1}+1\right)}=\frac{c}{2} \sum_{x_{1}=1}^{\infty}\left[\frac{1}{x_{1}}-\frac{1}{x_{1}+1}\right]=\frac{c}{2}
$$

as all terms in the sum except the first cancel. Hence $c=2$. Also, as the joint function is symmetric in form for X_{1} and $X_{2}, f_{X_{1}}$ and $f_{X_{2}}$ are identical.

Example 2: Let X_{1} and X_{2} be continuous rvs with supports $\mathbb{X}_{1}=\mathbb{K}_{2}=(0,1)$ and joint pdf defined by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=4 x_{1} x_{2} \quad 0<x_{1}<1,0<x_{2}<1
$$

and zero otherwise. For $0<x_{1}, x_{2}<1$,

$$
\begin{aligned}
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=\int_{0}^{x_{2}} \int_{0}^{x_{1}} 4 t_{1} t_{2} d t_{1} d t_{2} \\
& =\left\{\int_{0}^{x_{1}} 2 t_{1} d t_{1}\right\}\left\{\int_{0}^{x_{2}} 2 t_{2} d t_{2}\right\}=\left(x_{1} x_{2}\right)^{2}
\end{aligned}
$$

and a full specification for $F_{X_{1}, X_{2}}$ is

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}0 & x_{1}, x_{2} \leq 0 \\ \left(x_{1} x_{2}\right)^{2} & 0<x_{1}, x_{2}<1 \\ x_{1}^{2} & 0<x_{1}<1, x_{2} \geq 1 \\ x_{2}^{2} & 0<x_{2}<1, x_{1} \geq 1 \\ 1 & x_{1}, x_{2} \geq 1\end{cases}
$$

To calculate, for $c \in \mathbb{R}$,

$$
P_{X_{1}, X_{2}}\left[\frac{X_{1}+X_{2}}{2}<c\right]
$$

we need to integrate $f_{X_{1}, X_{2}}$ over the set $A_{c}=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, x_{2}<1,\left(x_{1}+x_{2}\right) / 2<c\right\}$, that is, if $c=1 / 2$,

$$
P_{X_{1}, X_{2}}\left[\left(X_{1}+X_{2}\right)<1\right]=\int_{0}^{1} \int_{0}^{1-x_{1}} 4 x_{1} x_{2} d x_{2} d x_{1}=\int_{0}^{1} 2 x_{1}\left(1-x_{1}\right)^{2} d x_{1}=\frac{1}{6}
$$

Example 3: Let X_{1}, X_{2} be continuous random variables with supports $\mathbb{K}_{1} \equiv \mathbb{K}_{2} \equiv[0,1]$, and joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1 \quad 0 \leq x_{1}, x_{2} \leq 1
$$

and zero otherwise. Let $Y=X_{1}+X_{2}$. Then $\Downarrow \equiv[0,2]$,

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{X_{1}, X_{2}}\left[X_{1}+X_{2} \leq y\right]
$$

To calculate $P\left[X_{1}+X_{2} \leq y\right]$, need to integrate $f_{X_{1}, X_{2}}$ over the set

$$
A_{y}=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, x_{2}<1, x_{1}+x_{2} \leq y\right\}
$$

This region is a portion of the unit square (that is, $\mathcal{X}_{1} \times \mathfrak{X}_{2}$) ; the line $x_{1}+x_{2}=y$ is a line with negative slope that cuts the horizontal axis at $x_{1}=y$, and the vertical axis at $x_{2}=y$.

- For $0 \leq y \leq 1, A_{y}$ is the dark shaded lower triangle in the left panel of the figure below; hence for fixed y,

$$
P_{X_{1}, X_{2}}\left[X_{1}+X_{2}<y\right]=\int_{0}^{y} \int_{0}^{y-x_{2}} 1 d x_{1} d x_{2}=\int_{0}^{y}\left(y-x_{2}\right) d x_{2}=\frac{y^{2}}{2} .
$$

- For $1 \leq y \leq 2, A_{y}$ is more complicated see the figure below (right panel). It is easier mathematically to describe the complement of A_{y} within $\mathbb{K}_{1} \times \mathbb{K}_{2}$ (striped in the right panel of the figure below), so we instead compute the complement probability as follows:

$$
\begin{aligned}
P_{X_{1}, X_{2}}\left[X_{1}+X_{2} \leq y\right] & =1-P_{X_{1}, X_{2}}\left[X_{1}+X_{2}>y\right] \\
& =1-\int_{y-1}^{1} \int_{y-x_{2}}^{1} 1 d x_{1} d x_{2}=1-\int_{y-1}^{1}\left(1-y+x_{2}\right) d x_{2}=-\frac{y^{2}}{2}+2 y-1
\end{aligned}
$$

These two expressions give the $\mathrm{cdf} F_{Y}$, and hence by differentiation we have

$$
f_{Y}(y)= \begin{cases}y & 0 \leq y \leq 1 \\ 2-y & 1 \leq y \leq 2\end{cases}
$$

and zero otherwise.

Example 4: Let X_{1} and X_{2} be continuous rvs with supports $\mathbb{X}_{1}=(0,1), \mathcal{X}_{2}=(0,2)$ and joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) \quad 0<x_{1}<1,0<x_{2}<2
$$

and zero otherwise.
(i) To calculate c, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{0}^{2}\left\{\int_{0}^{1} c\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) d x_{1}\right\} d x_{2} \\
& =\int_{0}^{2} c\left[\frac{x_{1}^{3}}{3}+\frac{x_{1}^{2} x_{2}}{4}\right]_{0}^{1} d x_{2} \\
& =\int_{0}^{2} c\left(\frac{1}{3}+\frac{x_{2}}{4}\right) d x_{2} \\
& =c\left[\frac{x_{2}}{3}+\frac{x_{2}^{2}}{8}\right]_{0}^{2}=c \frac{7}{6}
\end{aligned}
$$

so $c=6 / 7$. The marginal pdf of X_{1} is given, for $0<x_{1}<1$, by
$f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{0}^{2} \frac{6}{7}\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) d x_{2}=\frac{6}{7}\left[x_{1}^{2} x_{2}+\frac{x_{1} x_{2}^{2}}{4}\right]_{0}^{2}=\frac{6 x_{1}\left(2 x_{1}+1\right)}{7}$
and is zero otherwise.
(ii) To compute $P_{X_{1}, X_{2}}\left[X_{1}>X_{2}\right]$, let

$$
A=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}<1,0<x_{2}<2, x_{2}<x_{1}\right\}
$$

so that

$$
\begin{aligned}
P_{X_{1}, X_{2}}\left[X_{1}\right. & \left.>X_{2}\right]=\iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
& =\int_{0}^{1}\left\{\int_{0}^{x_{1}} \frac{6}{7}\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) d x_{2}\right\} d x_{1} \\
& =\int_{0}^{1}\left[x_{1}^{2} x_{2}+\frac{x_{1} x_{2}^{2}}{4}\right]_{0}^{x_{1}} d x_{1} \\
& =\int_{0}^{1}\left(x_{1}^{3}+\frac{x_{1}^{3}}{4}\right) d x_{1} \\
& =\frac{6}{7}\left[\frac{5 x_{1}^{4}}{16}\right]_{0}^{1} \\
& =\frac{15}{56}
\end{aligned}
$$

Example 5: Let X_{1}, X_{2} and X_{3} be continuous rvs with joint pdf defined by

$$
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=c \quad 0<x_{1}<x_{2}<x_{3}<1
$$

and zero otherwise. The support of this pdf is $\mathbb{X}^{(3)}=\left\{\left(x_{1}, x_{2}, x_{3}\right): 0<x_{1}<x_{2}<x_{3}<1\right\}$.
(i) To calculate c, integrate carefully over $\mathbb{K}^{(3)}$, that is

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}=1
$$

gives that

$$
\int_{0}^{1}\left\{\int_{0}^{x_{3}}\left\{\int_{0}^{x_{2}} c d x_{1}\right\} d x_{2}\right\} d x_{3}=1
$$

Now

$$
\int_{0}^{1}\left\{\int_{0}^{x_{3}}\left\{\int_{0}^{x_{2}} c d x_{1}\right\} d x_{2}\right\} d x_{3}=\int_{0}^{1}\left\{\int_{0}^{x_{3}} c x_{2} d x_{2}\right\} d x_{3}=\int_{0}^{1} \frac{c x_{3}^{2}}{2} d x_{3}=\frac{c}{6}
$$

and hence $c=6$.
(ii) For $0<x_{3}<1, f_{X_{3}}$ is given by
$f_{X_{3}}\left(x_{3}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2}=\int_{0}^{x_{3}}\left\{\int_{0}^{x_{2}} 6 d x_{1}\right\} d x_{2}=\int_{0}^{x_{3}} 6 x_{2} d x_{2}=3 x_{3}^{2}$
and is zero otherwise. Similar calculations for X_{1} and X_{2} give

$$
\begin{array}{ll}
f_{X_{1}}\left(x_{1}\right)=3\left(1-x_{1}\right)^{2} & 0<x_{1}<1 \\
f_{X_{2}}\left(x_{2}\right)=6 x_{2}\left(1-x_{2}\right) & 0<x_{2}<1
\end{array}
$$

with both densities equal to zero outside of these supports. Furthermore, for the joint marginal of X_{1} and X_{2}, we have

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) d x_{3}=\int_{x_{2}}^{1} 6 d x_{3}=6\left(1-x_{2}\right) \quad 0<x_{1}<x_{2}<1
$$

and zero otherwise. We have for the conditional of X_{1} given $X_{2}=x_{2}$,

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{1}{x_{2}} \quad 0<x_{1}<x_{2}
$$

and zero otherwise for fixed x_{2}.
(iii) We can calculate the expectation of X_{1} directly

$$
\mathbb{E}_{X_{1}}\left[X_{1}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1}}\left(x_{1}\right) d x_{1}=\int_{0}^{1} x_{1} 3\left(1-x_{1}\right)^{2} d x_{1}=\frac{1}{4}
$$

or, alternatively, using the law of iterated expectation (see page 11)

$$
\mathbb{E}_{X_{1} \mid X_{2}}\left[X_{1} \mid X_{2}=x_{2}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}=\int_{0}^{x_{2}} x_{1} \frac{1}{x_{2}} d x_{1}=\frac{x_{2}}{2}
$$

and hence by the law of iterated expectation

$$
\begin{aligned}
\mathbb{E}_{X_{1}}\left[X_{1}\right] & =\mathbb{E}_{X_{2}}\left[\mathbb{E}_{X_{1} \mid X_{2}}\left[X_{1} \mid X_{2}\right]\right]=\int_{-\infty}^{\infty}\left\{\mathbb{E}_{X_{1} \mid X_{2}}\left[X_{1} \mid X_{2}=x_{2}\right]\right\} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\int_{0}^{1} \frac{x_{2}}{2} 6 x_{2}\left(1-x_{2}\right) d x_{2}=\frac{1}{4}
\end{aligned}
$$

Multivariate 1-1 Transformations

We consider the case of 1-1 transformations g, as in this case the probability transform result coincides with changing variables in a d-dimensional integral. We can consider $g=\left(g_{1}, \ldots, g_{d}\right)$ as a vector of functions forming the components of the new random vector \mathbf{Y}.

Given a collection of variables $\left(X_{1}, \ldots, X_{d}\right)$ with support $\mathcal{X}^{(d)}$ and joint pdf $f_{X_{1}, \ldots, X_{d}}$ we can construct the pdf of a transformed set of variables $\left(Y_{1}, \ldots, Y_{d}\right)$ using the following steps:
(I) Write down the set of transformation functions g_{1}, \ldots, g_{d}

$$
\begin{gathered}
Y_{1}=g_{1}\left(X_{1}, \ldots, X_{d}\right) \\
\vdots \\
Y_{d}=g_{d}\left(X_{1}, \ldots, X_{d}\right)
\end{gathered}
$$

(II) Write down the set of inverse transformation functions $g_{1}^{-1}, \ldots, g_{d}^{-1}$

$$
\begin{gathered}
X_{1}=g_{1}^{-1}\left(Y_{1}, \ldots, Y_{d}\right) \\
\vdots \\
X_{d}=g_{d}^{-1}\left(Y_{1}, \ldots, Y_{d}\right)
\end{gathered}
$$

(III) Consider the joint support of the new variables, $\curlyvee^{(d)}$.
(IV) Compute the Jacobian of the transformation: first form the matrix of partial derivatives

$$
D_{y}=\left[\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{d}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{d}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{d}}{\partial y_{1}} & \frac{\partial x_{d}}{\partial y_{2}} & \cdots & \frac{\partial x_{d}}{\partial y_{d}}
\end{array}\right]
$$

where, for each (i, j)

$$
\frac{\partial x_{i}}{\partial y_{j}}=\frac{\partial}{\partial y_{j}}\left\{g_{i}^{-1}\left(y_{1}, \ldots, y_{d}\right)\right\}
$$

and then set $\left|J\left(y_{1}, \ldots, y_{d}\right)\right|=\left|\operatorname{det} D_{y}\right|$
Note that

$$
\operatorname{det} D_{y}=\operatorname{det} D_{y}^{\top}
$$

so that an alternative but equivalent Jacobian calculation can be carried out by forming D_{y}^{\top}. Note also that

$$
\left|J\left(y_{1}, \ldots, y_{d}\right)\right|=\frac{1}{\left|J\left(x_{1}, \ldots, x_{d}\right)\right|}
$$

where $J\left(x_{1}, \ldots, x_{d}\right)$ is the Jacobian of the transformation regarded in the reverse direction (that is, if we start with $\left(Y_{1}, \ldots, Y_{d}\right)$ and transfrom to $\left(X_{1}, \ldots, X_{d}\right)$)
(V) Write down the joint pdf of $\left(Y_{1}, \ldots, Y_{d}\right)$ as

$$
f_{Y_{1}, \ldots, Y_{d}}\left(y_{1}, \ldots, y_{d}\right)=f_{X_{1}, \ldots, X_{d}}\left(g_{1}^{-1}\left(y_{1}, \ldots, y_{d}\right), \ldots, g_{d}^{-1}\left(y_{1}, \ldots, y_{d}\right)\right) \times\left|J\left(y_{1}, \ldots, y_{d}\right)\right|
$$

for $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{Y}^{(d)}$

Example 6: Suppose that X_{1} and X_{2} have joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2 \quad 0<x_{1}<x_{2}<1
$$

and zero otherwise. Compute the joint pdf of random variables

$$
Y_{1}=\frac{X_{1}}{X_{2}} \quad Y_{2}=X_{2}
$$

SOLUTION

(I) Given that $\mathbb{X}^{(2)} \equiv\left\{\left(x_{1}, x_{2}\right): 0<x_{1}<x_{2}<1\right\}$ and

$$
g_{1}\left(t_{1}, t_{2}\right)=\frac{t_{1}}{t_{2}} \quad g_{2}\left(t_{1}, t_{2}\right)=t_{2}
$$

(II) Inverse transformations:

$$
\left.\begin{array}{l}
Y_{1}=X_{1} / X_{2} \\
Y_{2}=X_{2}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1} Y_{2} \\
X_{2}=Y_{2}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}
$$

(III) Range: to find $\Downarrow^{(2)}$ consider point by point transformation from $\mathbb{X}^{(2)}$ to $\Downarrow^{(2)}$ For a pair of points $\left(x_{1}, x_{2}\right) \in \mathbb{X}^{(2)}$ and $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ linked via the transformation, we have

$$
0<x_{1}<x_{2}<1 \Longleftrightarrow 0<y_{1} y_{2}<y_{2}<1
$$

and hence we can extract the inequalities

$$
0<y_{2}<1 \text { and } 0<y_{1}<1 \quad \therefore \quad \curlyvee^{(2)} \equiv(0,1) \times(0,1)
$$

(IV) The Jacobian for points $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ is

$$
D_{y}=\left[\begin{array}{cc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{cc}
y_{2} & y_{1} \\
0 & 1
\end{array}\right] \Rightarrow\left|J\left(y_{1}, y_{2}\right)\right|=\left|\operatorname{det} D_{y}\right|=\left|y_{2}\right|=y_{2}
$$

Note that for points $\left(x_{1}, x_{2}\right) \in \mathbb{X}^{(2)}$ is

$$
D_{x}=\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{x_{2}} & \frac{x_{1}}{x_{2}^{2}} \\
0 & 1
\end{array}\right] \Rightarrow\left|J\left(x_{1}, x_{2}\right)\right|=\left|\operatorname{det} D_{x}\right|=\left|\frac{1}{x_{2}}\right|=\frac{1}{x_{2}}
$$

so that

$$
\left|J\left(y_{1}, y_{2}\right)\right|=\frac{1}{\left|J\left(x_{1}, x_{2}\right)\right|}
$$

(V) Finally, we have

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(y_{1} y_{2}, y_{2}\right) \times y_{2}=2 y_{2} \quad 0<y_{1}<1,0<y_{2}<1
$$

and zero otherwise

Example 7: Suppose that X_{1} and X_{2} are independent and identically distributed random variables defined on \mathbb{R}^{+}each with pdf of the form

$$
f_{X}(x)=\sqrt{\frac{1}{2 \pi x}} \exp \left\{-\frac{x}{2}\right\} \quad x>0
$$

and zero otherwise. Compute the joint pdf of random variables $Y_{1}=X_{1}$ and $Y_{2}=X_{1}+X_{2}$

SOLUTION

(I) Given that $\mathbb{X}^{(2)} \equiv\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, 0<x_{2}\right\}$ and

$$
g_{1}\left(t_{1}, t_{2}\right)=t_{1} \quad g_{2}\left(t_{1}, t_{2}\right)=t_{1}+t_{2}
$$

(II) Inverse transformations:

$$
\left.\begin{array}{l}
Y_{1}=X_{1} \\
Y_{2}=X_{1}+X_{2}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1} \\
X_{2}=Y_{2}-Y_{1}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}-t_{1}
$$

(III) Range: to find $\mathbb{Y}^{(2)}$ consider point by point transformation from $\mathbb{X}^{(2)}$ to $\mho^{(2)}$ For a pair of points $\left(x_{1}, x_{2}\right) \in \mathbb{X}^{(2)}$ and $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ linked via the transformation; as both original variables are strictly positive, we can extract the inequalities

$$
0<y_{1}<y_{2}<\infty
$$

(IV) The Jacobian for points $\left(y_{1}, y_{2}\right) \in \bigvee^{(2)}$ is

$$
D_{y}=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \Rightarrow\left|J\left(y_{1}, y_{2}\right)\right|=\left|\operatorname{det} D_{y}\right|=|1|=1
$$

Note, here, $J\left(x_{1}, x_{2}\right)=\left|\operatorname{det} D_{x}\right|=1$ also so that again

$$
\left|J\left(y_{1}, y_{2}\right)\right|=\frac{1}{\left|J\left(x_{1}, x_{2}\right)\right|}
$$

(V) Finally, we have for $0<y_{1}<y_{2}<\infty$

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{X_{1}, X_{2}}\left(y_{1}, y_{2}-y_{1}\right) \times 1=f_{X_{1}}\left(y_{1}\right) \times f_{X_{2}}\left(y_{2}-y_{1}\right) \quad \text { by independence } \\
& =\sqrt{\frac{1}{2 \pi y_{1}}} \exp \left\{-\frac{y_{1}}{2}\right\} \sqrt{\frac{1}{2 \pi\left(y_{2}-y_{1}\right)}} \exp \left\{-\frac{\left(y_{2}-y_{1}\right)}{2}\right\} \\
& =\frac{1}{2 \pi} \frac{1}{\sqrt{y_{1}\left(y_{2}-y_{1}\right)}} \exp \left\{-\frac{y_{2}}{2}\right\}
\end{aligned}
$$

and zero otherwise

Here, for $y_{2}>0$

$$
\begin{aligned}
f_{Y_{2}}\left(y_{2}\right) & =\int_{-\infty}^{\infty} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1}=\int_{0}^{y_{2}} \frac{1}{2 \pi} \frac{1}{\sqrt{y_{1}\left(y_{2}-y_{1}\right)}} \exp \left\{-\frac{y_{2}}{2}\right\} d y_{1} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{y_{2}}{2}\right\} \int_{0}^{y_{2}} \frac{1}{\sqrt{y_{1}\left(y_{2}-y_{1}\right)}} d y_{1} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{y_{2}}{2}\right\} \int_{0}^{1} \frac{1}{\sqrt{t y_{2}\left(y_{2}-t y_{2}\right)}} y_{2} d t \quad \text { setting } y_{1}=t y_{2} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{y_{2}}{2}\right\} \int_{0}^{1} \frac{1}{\sqrt{t(1-t)}} d t \\
& =\frac{1}{2} \exp \left\{-\frac{y_{2}}{2}\right\}
\end{aligned}
$$

as

$$
\int_{0}^{1} \frac{1}{\sqrt{t(1-t)}} d t=\pi
$$

either by direct calculation, or by recognizing the integrand as proportional to a $\operatorname{Beta}(1 / 2,1 / 2)$ pdf.

Example 8: The Cauchy distribution is a symmetric distribution on $(-\infty, \infty)$ with pdf

$$
f_{X}(x ; \theta, \sigma)=\frac{1}{\pi} \frac{1}{\sigma} \cdot \frac{1}{1+\left(\frac{x-\theta}{\sigma}\right)^{2}}=\frac{1}{\pi} \cdot \frac{\sigma}{\sigma^{2}+(x-\theta)^{2}}
$$

The standard case is $\theta=0, \sigma=1$.
The Cauchy distribution arises as the ratio of two independent Gaussian random variables. Suppose that $X, Y \sim \operatorname{Normal}(0,1)$. We then proceed by
(a) defining the transformation $U=X / Y$ and $V=|Y|$,
(b) finding the joint pdf $f_{U, V}(u, v)$, and
(c) integrating out V to obtain the marginal pdf of U.

Overall, the mapping $U=X / Y$ and $V=|Y|$ is not 1-1: the two points (x, y) and $(-x,-y)$ map to the same (u, v). However, we may partition the support of (X, Y) into three regions A_{0}, A_{1}, A_{2} such that the mapping from A_{i} to (U, V) is one-to-one on each. For simplicity here we denote the inverse mappings as h rather than g^{-1}.
(i) $A_{0}=\{(X, Y): Y=0\}$: we can ignore this case as the distribution of Y is continuous, so $P_{Y}[Y=0]=0$ when $Y \sim \operatorname{Normal}(0,1)$.
(ii) $A_{1}=\{(X, Y): Y>0\}$: The mapping $U=X / Y, V=|Y|$ is 1-1, and the inverse mappings are $h_{11}(u, v)=u v, h_{21}(u, v)=v$.
(iii) $A_{2}=\{(X, Y): Y<0\}$: The mapping $U=X / Y, V=|Y|$ is one-to-one, and the inverse mappings are $h_{12}(u, v)=-u v, h_{22}(u, v)=-v$.

In cases (ii) and (iii) we have the following Jacobians:

$$
\begin{aligned}
& J_{1}=\left|\begin{array}{ll}
\frac{\partial h_{11}(u, v)}{\partial u} & \frac{\partial h_{11}(u, v)}{\partial v} \\
\frac{\partial h_{21}(u, v)}{\partial u} & \frac{\partial h_{21}(u, v)}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial(u v)}{\partial u} & \frac{\partial(u v)}{\partial v} \\
\frac{\partial v}{\partial u} & \frac{\partial v}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
0 & 1
\end{array}\right| \\
& J_{2}=\left|\begin{array}{ll}
\frac{\partial h_{12}(u, v)}{\partial u} & \frac{\partial h_{12}(u, v)}{\partial v} \\
\frac{\partial h_{22}(u, v)}{\partial u} & \frac{\partial h_{22}(u, v)}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{\partial(-u v)}{\partial u} & \frac{\partial(-u v)}{\partial v} \\
\frac{\partial(-v)}{\partial u} & \frac{\partial(-v)}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
-v & -u \\
0 & -1
\end{array}\right|=v
\end{aligned}
$$

We have that

$$
f_{X, Y}(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-x^{2} / 2\right\} \frac{1}{\sqrt{2 \pi}} \exp \left\{-y^{2} / 2\right\}=\frac{1}{2 \pi} \exp \left\{-\frac{\left(x^{2}+y^{2}\right)}{2}\right\}
$$

so therefore, using the indicator function to delineate the two cases, we have

$$
\begin{aligned}
f_{U, V}(u, v) & =\mathbb{1}_{A_{1}}(u, v) f_{X, Y}\left(h_{11}(u, v), h_{21}(u, v)\right)\left|J_{1}\right|+\mathbb{1}_{A_{2}}(u, v) f_{X, Y}\left(h_{12}(u, v), h_{22}(u, v)\right)\left|J_{2}\right| \\
& =\frac{\mathbb{1}_{A_{1}}(u, v)}{2 \pi} \exp \left(-\frac{(u v)^{2}+v^{2}}{2}\right)|v|+\frac{\mathbb{1}_{A_{2}}(u, v)}{2 \pi} \exp \left(-\frac{(-u v)^{2}+(-v)^{2}}{2}\right)|v| \\
& =\frac{v}{\pi} \exp \left(-\frac{v^{2}\left(u^{2}+1\right)}{2}\right), \quad u \in \mathbb{R}, v \in \mathbb{R}^{+}
\end{aligned}
$$

and hence, on marginalization

$$
\begin{array}{rlr}
f_{U}(u) & =\int_{0}^{\infty} \frac{v}{\pi} \exp \left\{-\frac{v^{2}\left(u^{2}+1\right)}{2}\right\} d v & \text { integrating out } v \\
& =\int_{0}^{\infty} \frac{1}{2 \pi} \exp \left\{-\frac{\left(u^{2}+1\right)}{2} z\right\} d z & \text { setting } z=v^{2} \text { and } d z=2 v d v \\
& =\frac{1}{2 \pi} \cdot \frac{2}{1+u^{2}} & \int_{0}^{\infty} \exp (-\alpha z) d z=\frac{1}{\alpha} \\
& =\frac{1}{\pi} \cdot \frac{1}{1+u^{2}} &
\end{array}
$$

The general $\operatorname{Cauchy}(\theta, \sigma)$ form is generated using a linear transformation: if $Z \sim \operatorname{Cauchy}(0,1)$, then

$$
X=\sigma Z+\theta
$$

has a $\operatorname{Cauchy}(\theta, \sigma)$ distribution. The second (equivalent) construction of the standard Cauchy distribution is as a scale mixture. Suppose X and Y have a joint distribution specified as

$$
\begin{aligned}
Y & \sim \chi_{1}^{2} \equiv \operatorname{Gamma}(1 / 2,1 / 2) \\
X \mid Y=y & \sim \operatorname{Normal}\left(0, y^{-1}\right)
\end{aligned}
$$

that is, the variance of X given $Y=y$ is $1 / y$. Then we have that

$$
\begin{aligned}
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y & =\int_{0}^{\infty} f_{X \mid Y}(x \mid y) f_{Y}(y) d y \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} y^{1 / 2} \exp \left\{-\frac{y}{2} x^{2}\right\} \frac{(1 / 2)^{1 / 2}}{\Gamma(1 / 2)} y^{-1 / 2} \exp \left\{-\frac{y}{2}\right\} d y \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \exp \left\{-\frac{y}{2}\left(1+x^{2}\right)\right\} d y \\
& =\frac{1}{\pi} \frac{1}{1+x^{2}}
\end{aligned}
$$

as $\Gamma(1 / 2)=\sqrt{\pi}$.
Example 9: Let X_{1}, X_{2} be continuous random variables with joint density $f_{X_{1}, X_{2}}$ and let $r v Y$ be defined by $Y=g\left(X_{1}, X_{2}\right)$. To calculate the pdf of Y we could use the multivariate transformation theorem after defining another (dummy) variable Z as some function of X_{1} and X_{2}, and consider the joint transformation $\left(X_{1}, X_{2}\right) \longrightarrow(Y, Z)$. Defining $Z=X_{1}$, we have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y, Z}(y, z) d z=\int_{-\infty}^{\infty} f_{Y \mid Z}(y \mid z) f_{Z}(z) d z=\int_{-\infty}^{\infty} f_{Y \mid X_{1}}\left(y \mid x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}
$$

as $f_{Y, Z}(y, z)=f_{Y \mid Z}(y \mid z) f_{Z}(z)$ by the chain rule for densities; $f_{Y \mid X_{1}}\left(y \mid x_{1}\right)$ is a univariate (conditional) pdf for Y given $X_{1}=x_{1}$.
Now, given that $X_{1}=x_{1}$, we have that $Y=g\left(x_{1}, X_{2}\right)$, that is, Y is a transformation of X_{2} only. Hence the conditional pdf $f_{Y \mid X_{1}}\left(y \mid x_{1}\right)$ can be derived using single variable (rather than multivariate) transformation techniques. Specifically, if $Y=g\left(x_{1}, X_{2}\right)$ is a 1-1 transformation from X_{2} to Y, then the inverse transformation $X_{2}=g^{-1}\left(x_{1}, Y\right)$ is well defined, and by the transformation theorem

$$
f_{Y \mid X_{1}}\left(y \mid x_{1}\right)=f_{X_{2} \mid X_{1}}\left(g^{-1}\left(x_{1}, y\right)\right)\left|J\left(y ; x_{1}\right)\right|=f_{X_{2} \mid X_{1}}\left(g^{-1}\left(x_{1}, y\right) \mid x_{1}\right)\left|\frac{\partial}{\partial t}\left\{g^{-1}\left(x_{1}, t\right)\right\}_{t=y}\right|
$$

and hence

$$
f_{Y}(y)=\int_{-\infty}^{\infty}\left\{f_{X_{2} \mid X_{1}}\left(g^{-1}\left(x_{1}, y\right) \mid x_{1}\right)\left|\frac{\partial}{\partial t}\left\{g^{-1}\left(x_{1}, t\right)\right\}_{t=y}\right|\right\} f_{X_{1}}\left(x_{1}\right) d x_{1}
$$

For example, if $Y=X_{1} X_{2}$, then $X_{2}=Y / X_{1}$, and hence

$$
\left|\frac{\partial}{\partial t}\left\{g^{-1}\left(x_{1}, t\right)\right\}_{t=y}\right|=\left|\frac{\partial}{\partial t}\left\{\frac{t}{x_{1}}\right\}_{t=y}\right|=\left|x_{1}\right|^{-1}
$$

so

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{2} \mid X_{1}}\left(y / x_{1} \mid x_{1}\right)\left|x_{1}\right|^{-1} f_{X_{1}}\left(x_{1}\right) d x_{1}
$$

The conditional density $f_{X_{2} \mid X_{1}}$ and / or the marginal density $f_{X_{1}}$ may be zero on parts of the range of the integral. Alternatively, the cdf of Y is given by

$$
F_{Y}(y)=P[Y \leq y]=P\left[g\left(X_{1}, X_{2}\right) \leq y\right]=\iint_{A_{y}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

where $A_{y}=\left\{\left(x_{1}, x_{2}\right): g\left(x_{1}, x_{2}\right) \leq y\right\}$ so the cdf can be calculated by carefully identifying and intergrating over the set A_{y}.

Multivariate Expectations

We define a multivariate expectation using the same approach as in the univariate case. If $X=$ (X_{1}, \ldots, X_{d} is a d-dimensional random vector, and g is a k-dimensional function, then

$$
\mathbb{E}_{X}[g(X)]=\int g(x) d F_{X}(x)
$$

that is, in the discrete case

$$
\mathbb{E}_{X_{1}, \ldots, X_{d}}\left[g\left(X_{1}, \ldots, X_{d}\right)\right]=\int_{x \in \mathbb{R}^{d}} g\left(x_{1}, \ldots, x_{d}\right) f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)
$$

and in the continuous case

$$
\mathbb{E}_{X_{1}, \ldots, X_{d}}\left[g\left(X_{1}, \ldots, X_{d}\right)\right]=\sum_{x \in \mathfrak{K}} g\left(x_{1}, \ldots, x_{d}\right) f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

Example 10: The law of iterated expectation uses a decomposition of the joint pmf or pdf to compute an expectation. For example, let X_{1}, X_{2} be rvs with joint density $f_{X_{1}, X_{2}}$. Then

$$
\begin{array}{rlr}
\mathbb{E}_{X_{1}}\left[X_{1}\right] & =\int_{-\infty}^{\infty} x_{1} f_{X_{1}}\left(x_{1}\right) d x_{1} \\
& =\int_{-\infty}^{\infty} x_{1}\left\{\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}\right\} d x_{1} \quad \text { defn of marginal } \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}\right\} d x_{2} \quad \text { exch. order of intgn. } \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}\right\} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\mathbb{E}_{X_{2}}\left[\mathbb{E}_{X_{1} \mid X_{2}}\left[X_{1} \mid X_{2}\right]\right]
\end{array}
$$

as the inner integral is the conditional expectation

$$
\mathbb{E}_{X_{1} \mid X_{2}}\left[X_{1} \mid X_{2}=x_{2}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}
$$

Let $g\left(X_{1}\right)$ be a function of X_{1} only. Then

$$
\begin{aligned}
\mathbb{E}_{X_{1}, X_{2}}\left[g\left(X_{1}\right)\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{1}\right\} d x_{2} \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}\right\} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\mathbb{E}_{X_{2}}\left[\mathbb{E}_{X_{1} \mid X_{2}}\left[g\left(X_{1}\right) \mid X_{2}\right]\right]=\mathbb{E}_{X_{1}}\left[g\left(X_{1}\right)\right]
\end{aligned}
$$

by the law of iterated expectation. Thus, we can compute the expectation with respect to the marginal $f_{X_{1}}$ rather than the joint pdf.

Example 11: If X_{1} and X_{2} are continuous rvs with joint mass function/pdf $f_{X_{1}, X_{2}}$, then the covariance of X_{1} and X_{2} is defined by

$$
\begin{aligned}
\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right] & =\mathbb{E}_{X_{1}, X_{2}}\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right] \\
& =\iint\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]-\mu_{2} \mathbb{E}_{X_{1}}\left[X_{1}\right]-\mu_{1} \mathbb{E}_{X_{2}}\left[X_{2}\right]+\mu_{1} \mu_{2} \\
& =\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2}
\end{aligned}
$$

where $\mu_{i}=\mathbb{E}_{X_{i}}\left[X_{i}\right]$ is the marginal expectation of X_{i}, for $i=1,2$
It follows that if $Y=X_{1}+X_{2}$, then

$$
\begin{aligned}
\mathbb{E}_{Y}[Y] & =\mathbb{E}_{X_{1}, X_{2}}\left[X_{1}+X_{2}\right]=\iint\left(x_{1}+x_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\iint x_{1} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}+\iint x_{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\mathbb{E}_{X_{1}}\left[X_{1}\right]+\mathbb{E}_{X_{2}}\left[X_{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}_{Y}[Y]= & \operatorname{Var}_{X_{1}, X_{2}}\left[X_{1}+X_{2}\right]=\mathbb{E}_{X_{1}, X_{2}}\left[\left(X_{1}+X_{2}-\left(\mu_{1}+\mu_{2}\right)\right)^{2}\right] \\
= & \iint\left(x_{1}+x_{2}-\mu_{1}-\mu_{2}\right)^{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
= & \iint\left[\left(x_{1}-\mu_{1}\right)^{2}+\left(x_{2}-\mu_{2}\right)^{2}+2\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right] f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
= & \iint\left(x_{1}-\mu_{1}\right)^{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}+\iint\left(x_{2}-\mu_{2}\right)^{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& +2 \iint\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
= & \operatorname{Var}_{X_{1}}\left[X_{1}\right]+\operatorname{Var}_{X_{2}}\left[X_{2}\right]+2 \operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]
\end{aligned}
$$

and the result for the sum of n variables follows similarly, or by induction.

Example 12: Let X_{1}, X_{2} be continuous random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c \quad 0<x_{1}<1, x_{1}<x_{2}<x_{1}+1
$$

and zero otherwise. To calculate c, we have

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\int_{0}^{1} \int_{x_{1}}^{x_{1}+1} c d x_{2} d x_{1}=\int_{0}^{1} c\left[x_{2}\right]_{x_{1}}^{x_{1}+1} d x_{1}=\int_{0}^{1} c d x_{2}=c
$$

so $c=1$. The marginal pdf of X_{1} is given by

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{x_{1}}^{x_{1}+1} 1 d x_{2}=1 \quad 0<x_{1}<1
$$

and zero otherwise, and the marginal pdf for X_{2} is given by

$$
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1}=\left\{\begin{array}{lll}
\int_{0}^{x_{2}} 1 d x_{1} & =x_{2} & 0<x_{2}<1 \\
\int_{x_{2}-1}^{1} 1 d x_{1} & =2-x_{2} & 1 \leq x_{2}<2
\end{array}\right.
$$

and zero otherwise. Hence

$$
\begin{aligned}
& \mathbb{E}_{X_{1}}\left[X_{1}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1}}\left(x_{1}\right) d x_{1}=\int_{0}^{1} x_{1} d x_{1}=\frac{1}{2} \\
& \begin{aligned}
\operatorname{Var}_{X_{1}}\left[X_{1}\right] & =\int_{-\infty}^{\infty} x_{1}^{2} f_{X_{1}}\left(x_{1}\right) d x_{1}-\left\{\mathbb{E}_{X_{1}}\left[X_{1}\right]\right\}^{2}=\int_{0}^{1} x_{1}^{2} d x_{1}-\frac{1}{4}=\frac{1}{12} \\
\mathbb{E}_{X_{2}}\left[X_{2}\right] & =\int_{-\infty}^{\infty} x_{2} f_{X_{2}}\left(x_{2}\right) d x_{2}=\int_{0}^{1} x_{2}^{2} d x_{2}+\int_{1}^{2} x_{2}\left(2-x_{2}\right) d x_{2} \\
& =\frac{1}{3}-\left(1-\frac{1}{3}\right)+\left(4-\frac{8}{3}\right)=1 \\
\operatorname{Var}_{X_{2}}\left[X_{2}\right] & =\int_{-\infty}^{\infty} x_{2}^{2} f_{X_{2}}\left(x_{2}\right) d x_{2}-\left\{\mathbb{E}_{X_{2}}\left[X_{2}\right]\right\}^{2} \\
& =\int_{0}^{1} x_{2}^{2} x_{2} d x_{2}+\int_{1}^{2} x_{2}^{2}\left(2-x_{2}\right) d x_{2}-1 \\
& =\frac{1}{4}-\left(\frac{2}{3}-\frac{1}{4}\right)+\left(\frac{16}{3}-4\right)-1=\frac{1}{6}
\end{aligned} .
\end{aligned}
$$

The covariance and correlation of X_{1} and X_{2} are then given by

$$
\begin{aligned}
\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right] & =\left\{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}\right\} d x_{1}-\mathbb{E}_{X_{1}}\left[X_{1}\right] \mathbb{E}_{X_{2}}\left[X_{2}\right] \\
& =\int_{0}^{1}\left\{\int_{x_{1}}^{x_{1}+1} x_{1} x_{2} d x_{2}\right\} d x_{1}-\frac{1}{2} \cdot 1 \\
& =\int_{0}^{1} x_{1}\left[\frac{x_{2}}{2}\right]_{x_{1}}^{x_{1}+1} d x_{1}-\frac{1}{2} \\
& =\int_{0}^{1}\left(x_{1}^{2}+\frac{x_{1}}{2}\right) d x_{1}-\frac{1}{2} \\
& =\left[\frac{x_{1}^{3}}{3}+\frac{x_{1}^{2}}{4}\right]_{0}^{1}-\frac{1}{2}=\frac{7}{12}-\frac{1}{2}=\frac{1}{12}
\end{aligned}
$$

and hence

$$
\operatorname{Corr}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]=\frac{\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]}{\sqrt{\operatorname{Var}_{X_{1}}\left[X_{1}\right] \operatorname{Var}_{X_{2}}\left[X_{2}\right]}}=\frac{1 / 12}{\sqrt{1 / 12} \sqrt{1 / 6}}=\frac{1}{\sqrt{2}}
$$

Example 13: Convolution Theorem Suppose that X_{1} and X_{2} have a joint pmf or pdf, $f_{X_{1}, X_{2}}$, and let $Y=X_{1}+X_{2}$. We compute the pmf/pdf of Y by using a Convolution Theorem, which for continuous variables is a special case of the transformation theorem.

- Discrete Case: By the Theorem of Total Probability, we have from first principles that for any fixed y.

$$
f_{Y}(y)=P_{Y}[Y=y]=\sum_{\substack{x_{1} \\ x_{1}+x_{2}=y}} \sum_{x_{2}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{x_{1}} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)
$$

- Continuous Case: Consider $Y=X_{1}+X_{2}$ and $Z=X_{1}$. We have

$$
\left.\begin{array}{l}
Y=X_{1}+X_{2} \\
Z=X_{1}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Z \\
X_{2}=Y-Z
\end{array}\right.
$$

The Jacobian of this transform is 1 , so we conclude from the transformation result that for all (y, z)

$$
f_{Y, Z}(y, z)=f_{X_{1}, X_{2}}(z, y-z)
$$

and hence, marginalizing z, we see that

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y, Z}(y, z) d z=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}(z, y-z) d z
$$

which we may rewrite

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right) d x_{1}
$$

(i) We should establish explicitly the support of the new variable Y when recording f_{Y}.
(ii) The marginalization over x_{1} must take into account the support of $f_{X_{1}, X_{2}}$: that is, for any fixed y only contributions to the sum or integral where

$$
f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)>0 .
$$

Example 14: Let X_{1}, X_{2} be continuous random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=x_{1} \exp \left\{-\left(x_{1}+x_{2}\right)\right\} \quad x_{1}, x_{2}>0
$$

and zero otherwise. Let $Y=X_{1}+X_{2}$. Then by the Convolution Theorem, for $y>0$,

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right) d x_{1} \\
& =\int_{0}^{y} x_{1} \exp \left\{-\left(x_{1}+\left(y-x_{1}\right)\right)\right\} d x_{1} \quad \text { as } f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)>0 \Leftrightarrow 0<x_{1}<y \\
& =\frac{1}{2} y^{2} e^{-y} \quad y>0
\end{aligned}
$$

and zero otherwise. Note that the integral range reduces to 0 to y as the joint density $f_{X_{1}, X_{2}}$ is only non-zero when both its arguments are positive, that is, when $x_{1}>0$ and $y-x_{1}>0$ for fixed y, or when $0<x_{1}<y$. We conclude that $Y \sim \operatorname{Gamma}(3,1)$.

Example 15: Let X_{1}, X_{2} be continuous random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2\left(x_{1}+x_{2}\right) \quad 0 \leq x_{1} \leq x_{2} \leq 1
$$

and zero otherwise. Let $Y=X_{1}+X_{2}$. Clearly Y takes values on $\mathbb{\mho} \equiv[0,2]$.
For fixed $y, 0 \leq y \leq 2$, we need to consider two ranges to respect the fact that the joint pdf is only non-zero if

$$
0 \leq x_{1} \leq x_{2} \leq 1
$$

(i) For $0 \leq y \leq 1$:

$$
0 \leq x_{1} \leq y-x_{1} \leq 1 \quad \Longrightarrow \quad 0 \leq 2 x_{1} \leq y
$$

or equivalently $0 \leq x_{1} \leq y / 2$.
(ii) For $1 \leq y \leq 2$

$$
0 \leq x_{1} \leq y-x_{1} \leq 1 \quad \Longrightarrow \quad y-1 \leq x_{1} \leq y / 2
$$

Therefore, by the Convolution Theorem, as

$$
f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)=2 y
$$

when the function is non-zero, we have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right) d x_{1}= \begin{cases}\int_{0}^{y / 2} 2 y d x_{1} & 0 \leq y \leq 1 \\ \int_{y-1}^{y / 2} 2 y d x_{1} & 1 \leq y \leq 2\end{cases}
$$

and zero otherwise. Hence

$$
f_{Y}(y)= \begin{cases}y^{2} & 0 \leq y \leq 1 \\ y(2-y) & 1 \leq y \leq 2\end{cases}
$$

It is straightforward to check that this density is a valid pdf. The region of $\left(X_{1}, Y\right)$ space on which the joint density $f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)$ is positive; this region is the triangle with corners $(0,0),(1,2),(0,1)$.

