
MATH 556: MATHEMATICAL STATISTICS I
MULTIVARIATE DISTRIBUTION CALCULATIONS

Example 1: Let X1 and X2 be discrete rvs each with range {1, 2, 3, . . .} and joint mass function

fX1,X2(x1, x2) =
c

(x1 + x2 − 1)(x1 + x2)(x1 + x2 + 1)
x1, x2 = 1, 2, 3, . . .

and zero otherwise. The marginal mass function for X is given by

fX1(x1) =

∞∑
x2=−∞

fX1,X2(x1, x2) =
∞∑

x2=1

c

(x1 + x2 − 1)(x1 + x2)(x1 + x2 + 1)

=

∞∑
x2=1

c

2

[
1

(x1 + x2 − 1)(x1 + x2)
− 1

(x1 + x2)(x1 + x2 + 1)

]

=
c

2

1

x1(x1 + 1)

as all other terms cancel, and to calculate c, note that
∞∑

x1=−∞
fX1(x1) =

∞∑
x1=1

c

2

1

x1(x1 + 1)
=

c

2

∞∑
x1=1

[
1

x1
− 1

x1 + 1

]
=

c

2

as all terms in the sum except the first cancel. Hence c = 2. Also, as the joint function is symmetric
in form for X1 and X2, fX1 and fX2 are identical.

Example 2: Let X1 and X2 be continuous rvs with supports X1 = X2 = (0, 1) and joint pdf defined by

fX1,X2(x1, x2) = 4x1x2 0 < x1 < 1, 0 < x2 < 1

and zero otherwise. For 0 < x1, x2 < 1,

FX1,X2(x1, x2) =

∫ x2

−∞

∫ x1

−∞
fX1,X2(t1, t2) dt1dt2 =

∫ x2

0

∫ x1

0
4t1t2 dt1dt2

=

{∫ x1

0
2t1 dt1

}{∫ x2

0
2t2 dt2

}
= (x1x2)

2

and a full specification for FX1,X2 is

FX1,X2(x1, x2) =



0 x1, x2 ≤ 0

(x1x2)
2 0 < x1, x2 < 1

x21 0 < x1 < 1, x2 ≥ 1

x22 0 < x2 < 1, x1 ≥ 1

1 x1, x2 ≥ 1

To calculate, for c ∈ R,

PX1,X2

[
X1 +X2

2
< c

]
we need to integrate fX1,X2 over the set Ac = {(x1, x2) : 0 < x1, x2 < 1, (x1 + x2)/2 < c}, that is,
if c = 1/2,

PX1,X2 [(X1 +X2) < 1] =

∫ 1

0

∫ 1−x1

0
4x1x2 dx2dx1 =

∫ 1

0
2x1(1− x1)

2 dx1 =
1

6

1



Example 3: Let X1, X2 be continuous random variables with supports X1 ≡ X2 ≡ [0, 1], and joint pdf

fX1,X2(x1, x2) = 1 0 ≤ x1, x2 ≤ 1

and zero otherwise. Let Y = X1 +X2. Then Y ≡ [0, 2],

FY (y) = PY [Y ≤ y] = PX1,X2 [X1 +X2 ≤ y]

To calculate P [X1 +X2 ≤ y], need to integrate fX1,X2 over the set

Ay = {(x1, x2) : 0 < x1, x2 < 1, x1 + x2 ≤ y}

This region is a portion of the unit square (that is, X1 × X2) ; the line x1 + x2 = y is a line with
negative slope that cuts the horizontal axis at x1 = y, and the vertical axis at x2 = y.

• For 0 ≤ y ≤ 1, Ay is the dark shaded lower triangle in the left panel of the figure below;
hence for fixed y,

PX1,X2 [X1 +X2 < y] =

∫ y

0

∫ y−x2

0
1 dx1dx2 =

∫ y

0
(y − x2)dx2 =

y2

2
.

• For 1 ≤ y ≤ 2, Ay is more complicated see the figure below (right panel). It is easier
mathematically to describe the complement of Ay within X1 × X2 (striped in the right panel
of the figure below), so we instead compute the complement probability as follows:

PX1,X2 [X1 +X2 ≤ y] = 1− PX1,X2 [X1 +X2 > y]

= 1−
∫ 1

y−1

∫ 1

y−x2

1 dx1dx2 = 1−
∫ 1

y−1
(1− y + x2)dx2 = −y2

2
+ 2y − 1

These two expressions give the cdf FY , and hence by differentiation we have

fY (y) =

{
y 0 ≤ y ≤ 1

2− y 1 ≤ y ≤ 2

and zero otherwise.
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Example 4: Let X1 and X2 be continuous rvs with supports X1 = (0, 1), X2 = (0, 2) and joint pdf

fX1,X2(x1, x2) = c
(
x21 +

x1x2
2

)
0 < x1 < 1, 0 < x2 < 2

and zero otherwise.

(i) To calculate c, we have∫ ∞

−∞

∫ ∞

−∞
fX1,X2(x1, x2) dx1dx2 =

∫ 2

0

{∫ 1

0
c
(
x21 +

x1x2
2

)
dx1

}
dx2

=

∫ 2

0
c

[
x31
3

+
x21x2
4

]1
0

dx2

=

∫ 2

0
c

(
1

3
+

x2
4

)
dx2

= c

[
x2
3

+
x22
8

]2
0

= c
7

6

so c = 6/7. The marginal pdf of X1 is given, for 0 < x1 < 1, by

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2) dx2 =

∫ 2

0

6

7

(
x21 +

x1x2
2

)
dx2 =

6

7

[
x21x2 +

x1x
2
2

4

]2
0

=
6x1(2x1 + 1)

7

and is zero otherwise.

(ii) To compute PX1,X2 [X1 > X2], let

A = { (x1, x2) : 0 < x1 < 1, 0 < x2 < 2, x2 < x1}

so that

PX1,X2 [X1 > X2] =

∫∫
A

fX1,X2(x1, x2) dx2dx1

=

∫ 1

0

{∫ x1

0

6

7

(
x21 +

x1x2
2

)
dx2

}
dx1

=

∫ 1

0

[
x21x2 +

x1x
2
2

4

]x1

0

dx1

=

∫ 1

0

(
x31 +

x31
4

)
dx1

=
6

7

[
5x41
16

]1
0

=
15

56
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Example 5: Let X1, X2 and X3 be continuous rvs with joint pdf defined by

fX1,X2,X3(x1, x2, x3) = c 0 < x1 < x2 < x3 < 1

and zero otherwise. The support of this pdf is X(3) = {(x1, x2, x3) : 0 < x1 < x2 < x3 < 1}.

(i) To calculate c, integrate carefully over X(3), that is∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX1,X2,X3(x1, x2, x3) dx1 dx2 dx3 = 1

gives that ∫ 1

0

{∫ x3

0

{∫ x2

0
c dx1

}
dx2

}
dx3 = 1

Now ∫ 1

0

{∫ x3

0

{∫ x2

0
c dx1

}
dx2

}
dx3 =

∫ 1

0

{∫ x3

0
cx2 dx2

}
dx3 =

∫ 1

0

cx23
2

dx3 =
c

6

and hence c = 6.

(ii) For 0 < x3 < 1, fX3 is given by

fX3(x3) =

∫ ∞

−∞

∫ ∞

−∞
fX1,X2,X3(x1, x2, x3) dx1 dx2 =

∫ x3

0

{∫ x2

0
6 dx1

}
dx2 =

∫ x3

0
6x2 dx2 = 3x23

and is zero otherwise. Similar calculations for X1 and X2 give

fX1(x1) = 3(1− x1)
2 0 < x1 < 1

fX2(x2) = 6x2(1− x2) 0 < x2 < 1

with both densities equal to zero outside of these supports. Furthermore, for the joint
marginal of X1 and X2, we have

fX1,X2(x1, x2) =

∫ ∞

−∞
fX1,X2,X3(x1, x2, x3) dx3 =

∫ 1

x2

6 dx3 = 6(1− x2) 0 < x1 < x2 < 1

and zero otherwise. We have for the conditional of X1 given X2 = x2,

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
=

1

x2
0 < x1 < x2

and zero otherwise for fixed x2.

(iii) We can calculate the expectation of X1 directly

EX1 [X1] =

∫ ∞

−∞
x1fX1(x1) dx1 =

∫ 1

0
x1 3(1− x1)

2 dx1 =
1

4

or, alternatively, using the law of iterated expectation (see page 11)

EX1|X2
[X1|X2 = x2] =

∫ ∞

−∞
x1fX1|X2

(x1|x2) dx1 =
∫ x2

0
x1

1

x2
dx1 =

x2
2

and hence by the law of iterated expectation

EX1 [X1] = EX2

[
EX1|X2

[X1|X2]
]
=

∫ ∞

−∞

{
EX1|X2

[X1|X2 = x2]
}
fX2(x2)dx2

=

∫ 1

0

x2
2
6x2(1− x2)dx2 =

1

4

4



Multivariate 1-1 Transformations
We consider the case of 1-1 transformations g, as in this case the probability transform result
coincides with changing variables in a d-dimensional integral. We can consider g = (g1, . . . , gd)
as a vector of functions forming the components of the new random vector Y.

Given a collection of variables (X1, . . . , Xd) with support X(d) and joint pdf fX1,...,Xd
we can

construct the pdf of a transformed set of variables (Y1, . . . , Yd) using the following steps:

(I) Write down the set of transformation functions g1, . . . , gd

Y1 = g1 (X1, . . . , Xd)
...

Yd = gd (X1, . . . , Xd)

.

(II) Write down the set of inverse transformation functions g−1
1 , . . . , g−1

d

X1 = g−1
1 (Y1, . . . , Yd)

...
Xd = g−1

d (Y1, . . . , Yd)

(III) Consider the joint support of the new variables, Y(d).

(IV) Compute the Jacobian of the transformation: first form the matrix of partial derivatives

Dy =



∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yd

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yd

...
...

. . .
...

∂xd
∂y1

∂xd
∂y2

· · · ∂xd
∂yd


where, for each (i, j)

∂xi
∂yj

=
∂

∂yj

{
g−1
i (y1, . . . , yd)

}
and then set |J (y1, . . . , yd)| = |detDy|

Note that
detDy = detD⊤

y

so that an alternative but equivalent Jacobian calculation can be carried out by forming D⊤
y . Note

also that
|J (y1, . . . , yd)| =

1

|J (x1, . . . , xd)|
where J (x1, . . . , xd) is the Jacobian of the transformation regarded in the reverse direction (that is,
if we start with (Y1, . . . , Yd) and transfrom to (X1, . . . , Xd))

(V) Write down the joint pdf of (Y1, . . . , Yd) as

fY1,...,Yd
(y1, . . . , yd) = fX1,...,Xd

(
g−1
1 (y1, . . . , yd) , . . . , g

−1
d (y1, . . . , yd)

)
× |J (y1, . . . , yd)|

for (y1, . . . , yd) ∈ Y(d)
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Example 6: Suppose that X1 and X2 have joint pdf

fX1,X2 (x1, x2) = 2 0 < x1 < x2 < 1

and zero otherwise. Compute the joint pdf of random variables

Y1 =
X1

X2
Y2 = X2

SOLUTION

(I) Given that X(2) ≡ {(x1, x2) : 0 < x1 < x2 < 1} and

g1(t1, t2) =
t1
t2

g2(t1, t2) = t2

(II) Inverse transformations:

Y1 = X1/X2

Y2 = X2

}
⇐⇒

{
X1 = Y1Y2
X2 = Y2

and thus
g−1
1 (t1, t2) = t1t2 g−1

2 (t1, t2) = t2

(III) Range: to find Y(2) consider point by point transformation from X(2) to Y(2) For a pair
of points (x1, x2) ∈ X(2) and (y1, y2) ∈ Y(2) linked via the transformation, we have

0 < x1 < x2 < 1 ⇐⇒ 0 < y1y2 < y2 < 1

and hence we can extract the inequalities

0 < y2 < 1 and 0 < y1 < 1 ∴ Y(2) ≡ (0, 1)× (0, 1)

(IV) The Jacobian for points (y1, y2) ∈ Y(2) is

Dy =


∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

 =

[
y2 y1

0 1

]
⇒ |J (y1, y2)| = |detDy| = |y2| = y2

Note that for points (x1, x2) ∈ X(2) is

Dx =


∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

 =

 1

x2

x1
x22

0 1

 ⇒ |J (x1, x2)| = |detDx| =
∣∣∣∣ 1x2

∣∣∣∣ = 1

x2

so that
|J (y1, y2)| =

1

|J (x1, x2)|
(V) Finally, we have

fY1,Y2 (y1, y2) = fX1,X2(y1y2, y2)× y2 = 2y2 0 < y1 < 1, 0 < y2 < 1

and zero otherwise
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Example 7: Suppose that X1 and X2 are independent and identically distributed random variables
defined on R+ each with pdf of the form

fX (x) =

√
1

2πx
exp

{
−x

2

}
x > 0

and zero otherwise. Compute the joint pdf of random variables Y1 = X1 and Y2 = X1+X2

SOLUTION

(I) Given that X(2) ≡ {(x1, x2) : 0 < x1, 0 < x2} and

g1(t1, t2) = t1 g2(t1, t2) = t1 + t2

(II) Inverse transformations:

Y1 = X1

Y2 = X1 +X2

}
⇐⇒

{
X1 = Y1
X2 = Y2 − Y1

and thus
g−1
1 (t1, t2) = t1 g−1

2 (t1, t2) = t2 − t1

(III) Range: to find Y(2) consider point by point transformation from X(2) to Y(2) For a pair of
points (x1, x2) ∈ X(2) and (y1, y2) ∈ Y(2) linked via the transformation; as both original
variables are strictly positive, we can extract the inequalities

0 < y1 < y2 < ∞

(IV) The Jacobian for points (y1, y2) ∈ Y(2) is

Dy =


∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

 =

[
1 0

−1 1

]
⇒ |J (y1, y2)| = |detDy| = |1| = 1

Note, here, J (x1, x2) = |detDx| = 1 also so that again

|J (y1, y2)| =
1

|J (x1, x2)|

(V) Finally, we have for 0 < y1 < y2 < ∞

fY1,Y2 (y1, y2) = fX1,X2(y1, y2 − y1)× 1 = fX1(y1)× fX2(y2 − y1) by independence

=

√
1

2πy1
exp

{
−y1

2

}√
1

2π (y2 − y1)
exp

{
−(y2 − y1)

2

}

=
1

2π

1√
y1 (y2 − y1)

exp
{
−y2

2

}
and zero otherwise
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Here, for y2 > 0

fY2(y2) =

∫ ∞

−∞
fY1,Y2 (y1, y2) dy1 =

∫ y2

0

1

2π

1√
y1 (y2 − y1)

exp
{
−y2

2

}
dy1

=
1

2π
exp

{
−y2

2

}∫ y2

0

1√
y1 (y2 − y1)

dy1

=
1

2π
exp

{
−y2

2

}∫ 1

0

1√
ty2 (y2 − ty2)

y2 dt setting y1 = ty2

=
1

2π
exp

{
−y2

2

}∫ 1

0

1√
t (1− t)

dt

=
1

2
exp

{
−y2

2

}
as ∫ 1

0

1√
t (1− t)

dt = π

either by direct calculation, or by recognizing the integrand as proportional to a Beta(1/2, 1/2)
pdf.

Example 8: The Cauchy distribution is a symmetric distribution on (−∞,∞) with pdf

fX(x; θ, σ) =
1

π

1

σ
· 1

1 +

(
x− θ

σ

)2 =
1

π
· σ

σ2 + (x− θ)2

The standard case is θ = 0, σ = 1.

The Cauchy distribution arises as the ratio of two independent Gaussian random variables.
Suppose that X,Y ∼ Normal(0, 1). We then proceed by
(a) defining the transformation U = X/Y and V = |Y |,

(b) finding the joint pdf fU,V (u, v), and

(c) integrating out V to obtain the marginal pdf of U .

Overall, the mapping U = X/Y and V = |Y | is not 1-1: the two points (x, y) and (−x,−y)
map to the same (u, v). However, we may partition the support of (X,Y ) into three regions
A0, A1, A2 such that the mapping from Ai to (U, V ) is one-to-one on each. For simplicity
here we denote the inverse mappings as h rather than g−1.

(i) A0 = {(X,Y ) : Y = 0}: we can ignore this case as the distribution of Y is continuous,
so PY [Y = 0] = 0 when Y ∼ Normal(0, 1).

(ii) A1 = {(X,Y ) : Y > 0}: The mapping U = X/Y , V = |Y | is 1-1, and the inverse
mappings are h11(u, v) = uv, h21(u, v) = v.

(iii) A2 = {(X,Y ) : Y < 0}: The mapping U = X/Y , V = |Y | is one-to-one, and the inverse
mappings are h12(u, v) = −uv, h22(u, v) = −v.

8



In cases (ii) and (iii) we have the following Jacobians:

J1 =

∣∣∣∣∣∣∣∣
∂h11(u, v)

∂u

∂h11(u, v)

∂v

∂h21(u, v)

∂u

∂h21(u, v)

∂v

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂(uv)

∂u

∂(uv)

∂v

∂v

∂u

∂v

∂v

∣∣∣∣∣∣∣∣ =

∣∣∣∣v u
0 1

∣∣∣∣ = v

J2 =

∣∣∣∣∣∣∣∣
∂h12(u, v)

∂u

∂h12(u, v)

∂v

∂h22(u, v)

∂u

∂h22(u, v)

∂v

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂(−uv)

∂u

∂(−uv)

∂v

∂(−v)

∂u

∂(−v)

∂v

∣∣∣∣∣∣∣∣ =

∣∣∣∣−v −u
0 −1

∣∣∣∣ = v

We have that

fX,Y (x, y) =
1√
2π

exp{−x2/2} 1√
2π

exp{−y2/2} =
1

2π
exp

{
−(x2 + y2)

2

}
so therefore, using the indicator function to delineate the two cases, we have

fU,V (u, v) = 1A1(u, v)fX,Y (h11(u, v), h21(u, v))|J1|+ 1A2(u, v)fX,Y (h12(u, v), h22(u, v))|J2|

=
1A1(u, v)

2π
exp

(
−(uv)2 + v2

2

)
|v|+ 1A2(u, v)

2π
exp

(
−(−uv)2 + (−v)2

2

)
|v|

=
v

π
exp

(
−v2(u2 + 1)

2

)
, u ∈ R, v ∈ R+

and hence, on marginalization

fU (u) =

∫ ∞

0

v

π
exp

{
−v2(u2 + 1)

2

}
dv integrating out v

=

∫ ∞

0

1

2π
exp

{
−(u2 + 1)

2
z

}
dz setting z = v2 and dz = 2vdv

=
1

2π
· 2

1 + u2

∫ ∞

0
exp(−αz)dz =

1

α

=
1

π
· 1

1 + u2

The general Cauchy(θ, σ) form is generated using a linear transformation: if Z ∼ Cauchy(0, 1),
then

X = σZ + θ

has a Cauchy(θ, σ) distribution. The second (equivalent) construction of the standard Cauchy
distribution is as a scale mixture. Suppose X and Y have a joint distribution specified as

Y ∼ χ2
1 ≡ Gamma(1/2, 1/2)

X|Y = y ∼ Normal(0, y−1)

9



that is, the variance of X given Y = y is 1/y. Then we have that

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

0
fX|Y (x|y)fY (y) dy

=

∫ ∞

0

1√
2π

y1/2 exp
{
−y

2
x2

} (1/2)1/2

Γ(1/2)
y−1/2 exp

{
−y

2

}
dy

=
1

2π

∫ ∞

0
exp

{
−y

2
(1 + x2)

}
dy

=
1

π

1

1 + x2

as Γ(1/2) =
√
π.

Example 9: Let X1, X2 be continuous random variables with joint density fX1,X2 and let rv Y be defined
by Y = g(X1, X2). To calculate the pdf of Y we could use the multivariate transformation
theorem after defining another (dummy) variable Z as some function of X1 and X2, and
consider the joint transformation (X1, X2) −→ (Y, Z). Defining Z = X1, we have

fY (y) =

∫ ∞

−∞
fY,Z(y, z) dz =

∫ ∞

−∞
fY |Z(y|z)fZ(z) dz =

∫ ∞

−∞
fY |X1

(y|x1)fX1(x1) dx1

as fY,Z(y, z) = fY |Z(y|z)fZ(z) by the chain rule for densities; fY |X1
(y|x1) is a univariate

(conditional) pdf for Y given X1 = x1.

Now, given that X1 = x1, we have that Y = g(x1, X2), that is, Y is a transformation of
X2 only. Hence the conditional pdf fY |X1

(y|x1) can be derived using single variable (rather
than multivariate) transformation techniques. Specifically, if Y = g(x1, X2) is a 1-1 transfor-
mation from X2 to Y , then the inverse transformation X2 = g−1(x1, Y ) is well defined, and
by the transformation theorem

fY |X1
(y|x1) = fX2|X1

(g−1(x1, y)) |J(y;x1)| = fX2|X1
(g−1(x1, y)|x1)

∣∣∣∣ ∂∂t {g−1(x1, t)
}
t=y

∣∣∣∣
and hence

fY (y) =

∫ ∞

−∞

{
fX2|X1

(g−1(x1, y)|x1)
∣∣∣∣ ∂∂t {g−1(x1, t)

}
t=y

∣∣∣∣} fX1(x1)dx1

For example, if Y = X1X2, then X2 = Y/X1, and hence∣∣∣∣ ∂∂t {g−1(x1, t)
}
t=y

∣∣∣∣ =
∣∣∣∣∣ ∂∂t

{
t

x1

}
t=y

∣∣∣∣∣ = |x1|−1

so
fY (y) =

∫ ∞

−∞
fX2|X1

(y/x1|x1) |x1|−1 fX1(x1)dx1.

The conditional density fX2|X1
and/or the marginal density fX1 may be zero on parts of the

range of the integral. Alternatively, the cdf of Y is given by

FY (y) = P [Y ≤ y] = P [g(X1, X2) ≤ y] =

∫∫
Ay

fX1,X2(x1, x2) dx2dx1

where Ay = { (x1, x2) : g(x1, x2) ≤ y} so the cdf can be calculated by carefully identifying
and intergrating over the set Ay.
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Multivariate Expectations
We define a multivariate expectation using the same approach as in the univariate case. If X =
(X1, . . . , Xd is a d-dimensional random vector, and g is a k-dimensional function, then

EX [g(X)] =

∫
g(x) dFX(x)

that is, in the discrete case

EX1,...,Xd
[g(X1, . . . , Xd)] =

∫
x∈Rd

g(x1, . . . , xd)fX1,...,Xd
(x1, . . . , xd)

and in the continuous case

EX1,...,Xd
[g(X1, . . . , Xd)] =

∑
x∈ X

g(x1, . . . , xd)fX1,...,Xd
(x1, . . . , xd) dx1 . . . dxd

Example 10: The law of iterated expectation uses a decomposition of the joint pmf or pdf to compute an
expectation. For example, let X1, X2 be rvs with joint density fX1,X2 . Then

EX1 [X1] =

∫ ∞

−∞
x1fX1(x1) dx1

=

∫ ∞

−∞
x1

{∫ ∞

−∞
fX1,X2(x1, x2) dx2

}
dx1 defn of marginal

=

∫ ∞

−∞

{∫ ∞

−∞
x1fX1|X2

(x1|x2)fX2(x2)dx2

}
dx2 exch. order of intgn.

=

∫ ∞

−∞

{∫ ∞

−∞
x1fX1|X2

(x1|x2) dx1
}
fX2(x2)dx2

= EX2

[
EX1|X2

[X1|X2]
]

as the inner integral is the conditional expectation

EX1|X2
[X1|X2 = x2] =

∫ ∞

−∞
x1fX1|X2

(x1|x2) dx1.

Let g(X1) be a function of X1 only. Then

EX1,X2 [g(X1)] =

∫ ∞

−∞

∫ ∞

−∞
g(x1)fX1,X2(x1, x2)dx1dx2

=

∫ ∞

−∞

{∫ ∞

−∞
g(x1)fX1|X2

(x1|x2)fX2(x2)dx1

}
dx2

=

∫ ∞

−∞

{∫ ∞

−∞
g(x1)fX1|X2

(x1|x2)dx1
}
fX2(x2)dx2

= EX2

[
EX1|X2

[g(X1)|X2]
]
= EX1 [g(X1)]

by the law of iterated expectation. Thus, we can compute the expectation with respect to
the marginal fX1 rather than the joint pdf.
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Example 11: If X1 and X2 are continuous rvs with joint mass function/pdf fX1,X2 , then the covariance
of X1 and X2 is defined by

CovX1,X2 [X1, X2] = EX1,X2 [(X1 − µ1)(X2 − µ2)]

=

∫∫
(x1 − µ1)(x2 − µ2) fX1,X2(x1, x2) dx1dx2

= EX1,X2 [X1X2]− µ2EX1 [X1]− µ1EX2 [X2] + µ1µ2

= EX1,X2 [X1X2]− µ1µ2

where µi = EXi [Xi] is the marginal expectation of Xi, for i = 1, 2

It follows that if Y = X1 +X2, then

EY [Y ] = EX1,X2 [X1 +X2] =

∫∫
(x1 + x2)fX1,X2(x1, x2) dx1dx2

=

∫∫
x1fX1,X2(x1, x2) dx1dx2 +

∫∫
x2fX1,X2(x1, x2) dx1dx2

= EX1 [X1] + EX2 [X2]

and

VarY [Y ] = VarX1,X2 [X1 +X2] = EX1,X2

[
(X1 +X2 − (µ1 + µ2))

2
]

=

∫∫
(x1 + x2 − µ1 − µ2)

2 fX1,X2(x1, x2) dx1dx2

=

∫∫ [
(x1 − µ1)

2 + (x2 − µ2)
2 + 2(x1 − µ1)(x2 − µ2)

]
fX1,X2(x1, x2) dx1dx2

=

∫∫
(x1 − µ1)

2fX1,X2(x1, x2) dx1dx2 +

∫∫
(x2 − µ2)

2fX1,X2(x1, x2) dx1dx2

+2

∫∫
(x1 − µ1)(x2 − µ2) fX1,X2(x1, x2) dx1dx2

= VarX1 [X1] + VarX2 [X2] + 2 CovX1,X2 [X1, X2]

and the result for the sum of n variables follows similarly, or by induction.

Example 12: Let X1, X2 be continuous random variables with joint pdf given by

fX1,X2(x1, x2) = c 0 < x1 < 1, x1 < x2 < x1 + 1

and zero otherwise. To calculate c, we have∫ ∞

−∞

∫ ∞

−∞
fX1,X2(x1, x2) dx2dx1 =

∫ 1

0

∫ x1+1

x1

c dx2dx1 =

∫ 1

0
c [x2]

x1+1
x1

dx1 =

∫ 1

0
c dx2 = c

so c = 1. The marginal pdf of X1 is given by

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2) dx2 =

∫ x1+1

x1

1 dx2 = 1 0 < x1 < 1

12



and zero otherwise, and the marginal pdf for X2 is given by

fX2(x2) =

∫ ∞

−∞
fX1,X2(x1, x2) dx1 =



∫ x2

0
1 dx1 = x2 0 < x2 < 1

∫ 1

x2−1
1 dx1 = 2− x2 1 ≤ x2 < 2

and zero otherwise. Hence

EX1 [X1] =

∫ ∞

−∞
x1fX1(x1) dx1 =

∫ 1

0
x1 dx1 =

1

2

VarX1 [X1] =

∫ ∞

−∞
x21fX1(x1) dx1 − {EX1 [X1]}2 =

∫ 1

0
x21 dx1 −

1

4
=

1

12

EX2 [X2] =

∫ ∞

−∞
x2fX2(x2) dx2 =

∫ 1

0
x22 dx2 +

∫ 2

1
x2(2− x2) dx2

=
1

3
−
(
1− 1

3

)
+

(
4− 8

3

)
= 1

VarX2 [X2] =

∫ ∞

−∞
x22fX2(x2) dx2 − {EX2 [X2]}2

=

∫ 1

0
x22x2 dx2 +

∫ 2

1
x22(2− x2) dx2 − 1

=
1

4
−
(
2

3
− 1

4

)
+

(
16

3
− 4

)
− 1 =

1

6

The covariance and correlation of X1 and X2 are then given by

CovX1,X2 [X1, X2] =

{∫ ∞

−∞

∫ ∞

−∞
x1x2fX1,X2(x1, x2) dx2

}
dx1 − EX1 [X1] EX2 [X2]

=

∫ 1

0

{∫ x1+1

x1

x1x2 dx2

}
dx1 −

1

2
.1

=

∫ 1

0
x1

[x2
2

]x1+1

x1

dx1 − 1

2

=

∫ 1

0

(
x21 +

x1
2

)
dx1 − 1

2

=

[
x31
3

+
x21
4

]1
0

− 1

2
=

7

12
− 1

2
=

1

12

and hence

CorrX1,X2 [X1, X2] =
CovX1,X2 [X1, X2]√
VarX1 [X1] VarX2 [X2]

=
1/12√

1/12
√

1/6
=

1√
2
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Example 13: Convolution Theorem Suppose that X1 and X2 have a joint pmf or pdf, fX1,X2 , and let
Y = X1 +X2. We compute the pmf/pdf of Y by using a Convolution Theorem, which for
continuous variables is a special case of the transformation theorem.

• Discrete Case: By the Theorem of Total Probability, we have from first principles that
for any fixed y.

fY (y) = PY [Y = y] =
∑
x1

∑
x2

x1+x2=y

fX1,X2(x1, x2) =
∑
x1

fX1,X2(x1, y − x1)

• Continuous Case: Consider Y = X1 +X2 and Z = X1. We have

Y = X1 +X2

Z = X1

}
⇐⇒

{
X1 = Z

X2 = Y − Z

The Jacobian of this transform is 1, so we conclude from the transformation result that
for all (y, z)

fY,Z(y, z) = fX1,X2(z, y − z)

and hence, marginalizing z, we see that

fY (y) =

∫ ∞

−∞
fY,Z(y, z) dz =

∫ ∞

−∞
fX1,X2(z, y − z) dz

which we may rewrite

fY (y) =

∫ ∞

−∞
fX1,X2(x1, y − x1) dx1.

(i) We should establish explicitly the support of the new variable Y when recording fY .
(ii) The marginalization over x1 must take into account the support of fX1,X2 : that is, for

any fixed y only contributions to the sum or integral where

fX1,X2(x1, y − x1) > 0.

Example 14: Let X1, X2 be continuous random variables with joint pdf given by

fX1,X2(x1, x2) = x1 exp {−(x1 + x2)} x1, x2 > 0

and zero otherwise. Let Y = X1 +X2. Then by the Convolution Theorem, for y > 0,

fY (y) =

∫ ∞

−∞
fX1,X2(x1, y − x1) dx1

=

∫ y

0
x1 exp {− (x1 + (y − x1))} dx1 as fX1,X2(x1, y − x1) > 0 ⇔ 0 < x1 < y

=
1

2
y2e−y y > 0

and zero otherwise. Note that the integral range reduces to 0 to y as the joint density fX1,X2

is only non-zero when both its arguments are positive, that is, when x1 > 0 and y − x1 > 0
for fixed y, or when 0 < x1 < y. We conclude that Y ∼ Gamma(3, 1).
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Example 15: Let X1, X2 be continuous random variables with joint pdf given by

fX1,X2(x1, x2) = 2(x1 + x2) 0 ≤ x1 ≤ x2 ≤ 1

and zero otherwise. Let Y = X1 +X2. Clearly Y takes values on Y ≡ [0, 2].

For fixed y, 0 ≤ y ≤ 2, we need to consider two ranges to respect the fact that the joint pdf
is only non-zero if

0 ≤ x1 ≤ x2 ≤ 1

(i) For 0 ≤ y ≤ 1:
0 ≤ x1 ≤ y − x1 ≤ 1 =⇒ 0 ≤ 2x1 ≤ y,

or equivalently 0 ≤ x1 ≤ y/2.

(ii) For 1 ≤ y ≤ 2
0 ≤ x1 ≤ y − x1 ≤ 1 =⇒ y − 1 ≤ x1 ≤ y/2.

Therefore, by the Convolution Theorem, as

fX1,X2(x1, y − x1) = 2y

when the function is non-zero, we have

fY (y) =

∫ ∞

−∞
fX1,X2(x1, y − x1) dx1 =



∫ y/2

0
2y dx1 0 ≤ y ≤ 1

∫ y/2

y−1
2y dx1 1 ≤ y ≤ 2

and zero otherwise. Hence

fY (y) =

 y2 0 ≤ y ≤ 1

y(2− y) 1 ≤ y ≤ 2

It is straightforward to check that this density is a valid pdf. The region of (X1, Y ) space on
which the joint density fX1,X2(x1, y − x1) is positive; this region is the triangle with corners
(0, 0), (1, 2), (0, 1).
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