
MATH 556: MATHEMATICAL STATISTICS I

SOME NOTES ON CHARACTERISTIC FUNCTIONS

The characteristic function for a random variable X with pmf/pdf fX is defined for t ∈ R as

φX(t) = EX [eitX ] = EX [cos(tX) + i sin(tX)] = EX [cos(tX)] + iEX [sin(tX)]

=

∫ ∞

−∞
eitx dFX(x) =

∫ ∞

−∞
cos(tx) dFX(x) + i

∫ ∞

−∞
sin(tx) dFX(x)

using the dFX(x) notation, where as usual the ‘integral’ is a sum in the discrete case. As cos and sin are
bounded functions, the two expectations are finite, so φX(t) is finite for all t.

Example: Double-Exponential (or Laplace) distribution

fX(x) =
1

2
e−|x| x ∈ R

which is an even function around zero. Then

φX(t) =

∫ ∞

−∞
eitx

1

2
e−|x| dx =

1

2

∫ 0

−∞
(cos(tx) + i sin(tx))ex dx+

1

2

∫ ∞

0
(cos(tx) + i sin(tx))e−x dx

≡ 1

2

∫ ∞

0
(cos(−tx) + i sin(−tx))e−x dx+

1

2

∫ ∞

0
(cos(tx) + i sin(tx))e−x dx

=
1

2

∫ ∞

0
(cos(tx)− i sin(tx))e−x dx+

1

2

∫ ∞

0
(cos(tx) + i sin(tx))e−x dx

=

∫ ∞

0
cos(tx)e−x dx. (1)

as cos is an even function and sin is an odd function. Integrating (1) by parts we have

φX(t) =
[
− cos(tx)e−x

]∞
0

+

∫ ∞

0
t sin(tx)e−x dx

= 1 +
[
−t sin(tx)e−x

]∞
0

−
∫ ∞

0
t2 cos(tx)e−x dx = 1− t2φX(t) ∴ φX(t) =

1

1 + t2
.

Example: Normal distribution

fX(x) =
1√
2π

e−x2/2 x ∈ R

Then,

φX(t) =

∫ ∞

−∞
eitx

1√
2π

e−x2/2 dx.

Now in the exponent

itx− 1

2
x2 = −1

2
(x− it)2 +

(it)2

2
= −1

2
(x− it)2 − t2

2

so we have

φX(t) =

∫ ∞

−∞

1√
2π

e−(x−it)2/2e−t2/2 dx = e−t2/2

∫ ∞

−∞

1√
2π

e−(x−it)2/2 dx = e−t2/2.

as the integral is equal to the standard Normal integral.
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General Results: The following results also hold:

• φX(t) is continuous for all t; this follows as cos and sin are continuous functions of x, and sums
and integrals of continuous functions are also continuous.

In fact, we can prove the stronger result that φX(t) is uniformly continuous on R. Consider,
for h > 0

|φX(t+ h)− φX(t)| ≤
∫ ∞

−∞
| exp{i(t+ h)x} − exp{itx}| dFX(x)

=

∫ ∞

−∞
| exp{itx}|| exp{ihx} − 1| dFX(x)

≤
∫ ∞

−∞
| exp{ihx} − 1| dFX(x) as | exp{itx}| ≤ 1

≤ 2 as | exp{ihx} − 1| ≤ 2

Further

x > 0 : | exp{ihx} − 1| =
∣∣∣∣∫ hx

0
eiu du

∣∣∣∣ ≤ ∫ hx

0

∣∣eiu∣∣ du =

∫ hx

0
du = hx

x < 0 : | exp{ihx} − 1| =
∣∣∣∣∫ 0

hx
eiu du

∣∣∣∣ ≤ ∫ 0

hx

∣∣eiu∣∣ du =

∫ 0

hx
du = −hx

and hence | exp{ihx} − 1| ≤ |hx|. Therefore

|φX(t+ h)− φX(t)| ≤
∫ ∞

−∞
|hx| dFX(x). (2)

Finally, let {hn} be any sequence such that hn −→ 0 as n −→ ∞. As

lim
n−→∞

∫ ∞

−∞
| exp{ihnx} − 1| dFX(x) ≤ lim

n−→∞

∫ ∞

−∞
|hnx| dFX(x)

and as exp{ixh} is continuous at zero, we can deduce that

lim
h−→0

∫ ∞

−∞
| exp{ihx} − 1| dFX(x) ≤

∫ ∞

−∞
lim

n−→∞
|hnx| dFX(x) = 0

using the dominated convergence theorem. Therefore |φX(t + h) − φX(t)| −→ 0 as h −→ 0,
and φX(t) is uniformly continuous in t as the bound in (2) does not depend on t.

• φX(t) is bounded in modulus by 1: |φX(t)| ≤ EX [|eitX |] = EX [1] = 1.

• If Y = aX + b for real constants a, b, then

φY (t) = EY [exp{itY }] = EX [exp{it(aX + b)}] = eitbEX [exp{i(at)X}] = eitbφX(at)

• If X is continuous with pdf fX satisfying fX(x) = fX(−x) for all x, then

φX(t) =

∫ ∞

−∞
(cos(tx) + i sin(tx))fX(x) dx = 2

∫ ∞

0
cos(tx)fX(x) dx

is entirely real and has no imaginary part.
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Inversion Formulae: To compute fX or FX from φX , we may use an inversion formula. First, recall
that for x1 ∈ R we are writing

FX(x1) = PX [X ≤ x1] = PX [X = x1] + PX [X < x1] ≡
∫ x1

−∞
dFX(x)

so that the note that the dFX(x) notation should be interpreted as meaning, for finite x1

∫ x1

−∞
dFX(x) =


FX(x1) FX(x) is continuous at x1

fX(x1) + lim
x−→x−

1

FX(x) FX(x) is not continuous at x1

We can state the inversion formula result as follows:

• Let FX(x) be defined by

FX(x) =
1

2

{
FX(x) + lim

y−→x−
FX(y)

}
.

Then for x0 < x1

FX(x1)− FX(x0) =
1

2π
lim

T−→∞

∫ T

−T

(
e−ix0t − e−ix1t

it

)
φX(t) dt

• Alternatively if x0 and x1 = x0 + h for h > 0 are continuity points of FX , then

FX(x0 + h)− FX(x0) =
1

2π
lim

T−→∞

∫ T

−T

(
1− e−ith

it

)
e−itx0φX(t) dt

or equivalently

FX(x1)− FX(x0) =
1

2π
lim

T−→∞

∫ T

−T

(
e−itx0 − e−itx1

it

)
φX(t) dt

The alternative representation relies on considering continuity points of FX(x); this is sufficient, as by
definition the number of points of discontinuity (that is, where there are masses of probability) must
be countable. But even at the discontinuity points, FX(x) is right-continuous, so we can consider the
limit of FX(x) evaluated at continuity points converging to the discontinuity points from above. Thus
the behaviour at the continuity points entirely determines FX(x).

Note first that by elementary calculus,

e−ix0t − e−ix1t

it
=

∫ x1

x0

e−itu du.

Therefore∫ T

−T

(
e−ix0t − e−ix1t

it

)
φX(t) dt =

∫ T

−T

{∫ x1

x0

e−itu du

}{∫ ∞

−∞
eitxdFX(x)

}
dt

=

∫ ∞

−∞

∫ T

−T

∫ x1

x0

e−it(u−x) du dt dFX(x)

=

∫ ∞

−∞

∫ T

−T

1

it

(
e−it(x0−x) − e−it(x1−x)

)
dt dFX(x). (3)
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Denote the inner integral by

g1(x0, x1, T, x) =

∫ T

−T

1

it

(
e−it(x0−x) − e−it(x1−x)

)
dt.

Now

e−it(x0−x) = cos(t(x0 − x))− i sin(t(x0 − x)) e−it(x1−x) = cos(t(x1 − x))− i sin(t(x1 − x))

and splitting the integral range (−T, 0) and (0, T ), we have that the integral becomes∫ 0

−T

1

it
(cos(t(x0 − x))− i sin(t(x0 − x))− cos(t(x1 − x)) + i sin(t(x1 − x))) dt

+

∫ T

0

1

it
(cos(t(x0 − x))− i sin(t(x0 − x))− cos(t(x1 − x)) + i sin(t(x1 − x))) dt

= −
∫ T

0

1

it
(cos(t(x0 − x)) + i sin(t(x0 − x))− cos(t(x1 − x))− i sin(t(x1 − x))) dt

+

∫ T

0

1

it
(cos(t(x0 − x))− i sin(t(x0 − x))− cos(t(x1 − x)) + i sin(t(x1 − x))) dt

g1(x0, x1, T, x) = 2

∫ T

0

(
sin((x1 − x)t)

t
− sin((x0 − x)t)

t

)
= 2g2(T, x1 − x)− 2g2(T, x0 − x).

say, where

g2(T, c) =

∫ T

0

sin(ct)

t
dt.

This is a standard integral: we have (see https://en.wikipedia.org/wiki/Dirichlet_integral)

g2(c) ≡ lim
T−→∞

g2(T, c) =

∫ ∞

0

sin(ct)

t
dt =


π/2 c > 0

0 c = 0

−π/2 c < 0

and for any fixed x0, x1, x, we need to compute when c = x0 − x and c = x1 − x. Now

(i) If x < x0 or x > x1, then x0 − x and x1 − x have the same sign, so

2g2(x1 − x)− 2g2(x0 − x) = ±(π − π) = 0.

(ii) If x0 = x, then x0 − x = 0 and x1 − x > 0, so

2g2(x1 − x)− 2g2(x0 − x) = π − 0 = π.

(iii) If x1 = x, then x0 − x < 0 and x1 − x = 0, so

2g2(x1 − x)− 2g2(x0 − x) = 0− (−π) = π.

(iv) If x0 < x < x1, then x0 − x < 0 and x1 − x > 0, so

2g2(x1 − x)− 2g2(x0 − x) = π − (−π) = 2π.
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Therefore

lim
T−→∞

g1(x0, x1, T, x) =


0 x < x0 or x > x1

π x = x0 or x = x1

2π x0 < x < x1.

Because of this we can deduce that |g1(x0, x1, T, x)| is bounded, and because g2(T, c) is continuous
in T , by the dominated convergence theorem, we can pass the limit under the integral in equation
(3), so

lim
T−→∞

∫ T

−T

(
e−ix0t − e−ix1t

it

)
φX(t) dt =

1

2π

∫ ∞

−∞
lim

T−→∞
g1(x0, x1, T, x)dFX(x)

=
1

2π

∫ x1

x0

lim
T−→∞

g1(x0, x1, T, x)dFX(x)

=
1

π

∫ x1

x0

(g2(x1 − x)− g2(x0 − x))dFX(x)

=
fX(x0)

π
(g2(x1 − x0)− g2(x0 − x0))

+
1

π

∫ x−
1

x+
0

(g2(x1 − x)− g2(x0 − x))dFX(x)

+
fX(x1)

π
(g2(x1 − x1)− g2(x0 − x1))

=
fX(x0)

2
+ (FX(x−1 )− FX(x+0 )) +

fX(x1)

2

which follows using the previous results

g2(x1 − x0)− g2(0) =
π

2
= g2(0)− g2(x0 − x1)

g2(x1 − x)− g2(x0 − x) = 2π x0 < x < x1

Now
FX(x−1 ) ≡ PX [X < x1] = FX(x1)− fX(x1)

and by right-continuity of FX(x), FX(x+0 ) = FX(x0), so we can re-write the final expression as(
FX(x1)−

1

2
fX(x1)

)
−

(
FX(x0)−

1

2
fX(x0)

)
.

But note that for arbitrary x

FX(x)− 1

2
fX(x) =

1

2
FX(x) +

1

2
(FX(x)− fX(x)) =

1

2
FX(x) +

1

2
lim

y−→x−
FX(y).

Thus

lim
T−→∞

∫ T

−T

(
e−ix0t − e−ix1t

it

)
φX(t) dt = FX(x1)− FX(x0)

by the definition of FX(x).
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In certain circumstances we may compute fX from φX more straightforwardly.

(I) If X is discrete taking values on the integers. Then

φX(t) =
∞∑

x=−∞
eitxfX(x).

For integers j and x, note that ∫ π

−π
ei(j−x)t dt =

{
2π if x = j

0 if x ̸= j

This follows as if x ̸= j, setting k = j − x, we have that∫ π

−π
ei(j−x)t dt =

∫ π

−π
eikt dt =

∫ 0

−π
eikt dt+

∫ π

0
eikt dt.

Then changing t −→ −t in the first integral, this equates to∫ ∞

0
e−ikt dt+

∫ π

0
eikt dt = 2

∫ π

0
cos(kt) dt = 0

for k ̸= 0, by elementary calculus. Thus for any fixed x

1

2π

∫ π

−π
e−ixtφX(t)dt =

1

2π

∫ π

−π
e−ixt


∞∑

j=−∞
eitjfX(j)

 dt =
1

2π

∞∑
j=−∞

fX(j)

∫ π

−π
ei(j−x)tdt = fX(x)

as the only non-zero term is when j = x. Thus for x ∈ Z

fX(x) =
1

2π

∫ π

−π
e−ixtφX(t) dt.

(II) If X is continuous and φX(t) is absolutely integrable, that is,∫ ∞

−∞
|φX(t)| dt < ∞

then
fX(x) =

1

2π

∫ ∞

−∞
e−itxφX(t) dt

Example: Suppose that for t ∈ R,
φX(t) = e−|t|.

Clearly this function is absolutely integrable wrt t, so we have

fX(x) =
1

2π

∫ ∞

−∞
e−itxe−|t| dt =

1

π

∫ ∞

0
cos(tx)e−t dt.

Now recall that the result in equation (1) states that∫ ∞

0
cos(tx)e−x dx =

1

1 + t2
.

Therefore we may deduce immediately by exchanging the roles of t and x that

1

π

∫ ∞

0
cos(tx)e−t dt =

1

π

1

1 + x2

Hence we have that X ∼ Cauchy.
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Diagnosing Discrete or Continuous Distributions

(I) If
lim sup
|t|−→∞

|φX(t)| = 1

then X is often a discrete random variable. Technically, X may also have a singular distribution
– see, for example www.math.mcgill.ca/dstephens/556/Papers/Koopmans.pdf. Such distribu-
tions have continuous cdfs which are not absolutely continuous.

(II) If
lim sup
|t|−→∞

|φX(t)| = 0

then X is continuous; consequently, if

lim
|t|−→∞

|φX(t)| = 0

then X is continuous.

Interpreting the characteristic function: To get a further understanding of characteristic function, we
consider the inversion formulae. For discrete random variables defined on the integers, we have

fX(x) =
1

2π

∫ π

−π
e−ixtφX(t) dt =

1

2π

∫ π

−π
[cos(xt)− i sin(xt)]φX(t) dt

One way to think about this integral is via a discrete approximation; fix

tj,N = −π +
2πj

N
j = 0, 1, 2, . . . , N

and write

fX(x) ≏
1

2π


N∑
j=0

cos(xtj,N )φX(tj,N )− i
N∑
j=0

sin(xtj,N )φX(tj,N )


(I) Suppose fX is degenerate at x0, that is,

fX(x) =

{
1 x = x0

0 x ̸= x0

Then by elementary calculations

φX(t) = cos(x0t) + i sin(x0t)

so that
Re(φX(t)) = cos(x0t) Im(φX(t)) = sin(x0t)

that is, pure sinusoids with period 2π/x0.

(II) Suppose fX is discrete, then as above

φX(t) =
∞∑
j=1

cos(txj)fX(xj) + i
∞∑
j=1

sin(txj)fX(xj)

so that

Re(φX(t)) =
∞∑
j=1

cos(txj)fX(xj) Im(φX(t)) =
∞∑
j=1

sin(txj)fX(xj)

that is, a weighted sum of pure sinusoids with period 2π/x1, 2π/x2, . . ., with weights determined
by fX
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Moments: By a standard series expansion, for t ∈ R,

exp{it} =
∞∑
r=0

(it)r

r!

and further, for each m = 1, 2, . . .

exp{it} =
m∑
r=0

(it)r

r!
+Rm(t)

where it can be shown that

|Rm(t)| ≤ min

{
|t|m+1

(m+ 1)!
,
2|t|m

m!

}
.

Therefore provided that EX [Xm] < ∞ is finite (so that EX [Xr] < ∞, r = 1, 2, . . . ,m) it follows that

φX(t) = EX [exp{itX}] =
m∑
r=0

(it)r

r!
EX [Xr] + EX [Rm(tX)]

= 1 +

m∑
r=1

(it)r

r!
EX [Xr] + EX [Rm(tX)]

It can be shown that as t −→ 0,
EX [Rm(tX)]

|t|m
−→ 0

and hence

φX(t) = 1 +

m∑
r=1

(it)r

r!
EX [Xr] + o(tm)

as t −→ 0. This implies that φX(t) is m times differentiable at t = 0, and

φ
(r)
X (0) =

drφX(t)

dtr

∣∣∣∣
t=0

= irEX [Xr] r = 1, 2, . . . ,m.

In general, the derivatives of φX(t) are not guaranteed to be finite; we can consider

φ
(r)
X (t) =

dr

dtr
{φX(t)}

but this quantity may not be defined, or finite, at any given t; if r = 1

φ
(1)
X (t) = EX [−X sin(tX)] + iEX [X cos(tX)].

but there is no guarantee that either expectation is finite. For example, for the Cauchy distribution

φX(t) = e−|t|

which has undefined derivative at t = 0.
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