Math 556: Mathematical Statistics I

Some notes on Characteristic Functions

The characteristic function for a random variable X with $\mathrm{pmf} / \mathrm{pdf} f_{X}$ is defined for $t \in \mathbb{R}$ as

$$
\begin{aligned}
\varphi_{X}(t) & =\mathbb{E}_{X}\left[e^{i t X}\right]=\mathbb{E}_{X}[\cos (t X)+i \sin (t X)]=\mathbb{E}_{X}[\cos (t X)]+i \mathbb{E}_{X}[\sin (t X)] \\
& =\int_{-\infty}^{\infty} e^{i t x} d F_{X}(x)=\int_{-\infty}^{\infty} \cos (t x) d F_{X}(x)+i \int_{-\infty}^{\infty} \sin (t x) d F_{X}(x)
\end{aligned}
$$

using the $d F_{X}(x)$ notation, where as usual the 'integral' is a sum in the discrete case. As cos and sin are bounded functions, the two expectations are finite, so $\varphi_{X}(t)$ is finite for all t.

Example: Double-Exponential (or Laplace) distribution

$$
f_{X}(x)=\frac{1}{2} e^{-|x|} \quad x \in \mathbb{R}
$$

which is an even function around zero. Then

$$
\begin{align*}
\varphi_{X}(t)=\int_{-\infty}^{\infty} e^{i t x} \frac{1}{2} e^{-|x|} d x & =\frac{1}{2} \int_{-\infty}^{0}(\cos (t x)+i \sin (t x)) e^{x} d x+\frac{1}{2} \int_{0}^{\infty}(\cos (t x)+i \sin (t x)) e^{-x} d x \\
& \equiv \frac{1}{2} \int_{0}^{\infty}(\cos (-t x)+i \sin (-t x)) e^{-x} d x+\frac{1}{2} \int_{0}^{\infty}(\cos (t x)+i \sin (t x)) e^{-x} d x \\
& =\frac{1}{2} \int_{0}^{\infty}(\cos (t x)-i \sin (t x)) e^{-x} d x+\frac{1}{2} \int_{0}^{\infty}(\cos (t x)+i \sin (t x)) e^{-x} d x \\
& =\int_{0}^{\infty} \cos (t x) e^{-x} d x \tag{1}
\end{align*}
$$

as \cos is an even function and \sin is an odd function. Integrating (1) by parts we have

$$
\begin{aligned}
\varphi_{X}(t) & =\left[-\cos (t x) e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} t \sin (t x) e^{-x} d x \\
& =1+\left[-t \sin (t x) e^{-x}\right]_{0}^{\infty}-\int_{0}^{\infty} t^{2} \cos (t x) e^{-x} d x=1-t^{2} \varphi_{X}(t) \quad \therefore \quad \varphi_{X}(t)=\frac{1}{1+t^{2}} .
\end{aligned}
$$

Example: Normal distribution

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad x \in \mathbb{R}
$$

Then,

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty} e^{i t x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x .
$$

Now in the exponent

$$
i t x-\frac{1}{2} x^{2}=-\frac{1}{2}(x-i t)^{2}+\frac{(i t)^{2}}{2}=-\frac{1}{2}(x-i t)^{2}-\frac{t^{2}}{2}
$$

so we have

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-i t)^{2} / 2} e^{-t^{2} / 2} d x=e^{-t^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-i t)^{2} / 2} d x=e^{-t^{2} / 2} .
$$

as the integral is equal to the standard Normal integral.

General Results: The following results also hold:

- $\varphi_{X}(t)$ is continuous for all t; this follows as cos and \sin are continuous functions of x, and sums and integrals of continuous functions are also continuous.

In fact, we can prove the stronger result that $\varphi_{X}(t)$ is uniformly continuous on \mathbb{R}. Consider, for $h>0$

$$
\begin{array}{rlrl}
\left|\varphi_{X}(t+h)-\varphi_{X}(t)\right| & \leq \int_{-\infty}^{\infty}|\exp \{i(t+h) x\}-\exp \{i t x\}| d F_{X}(x) & \\
& =\int_{-\infty}^{\infty}|\exp \{i t x\}||\exp \{i h x\}-1| d F_{X}(x) & \\
& \leq \int_{-\infty}^{\infty}|\exp \{i h x\}-1| d F_{X}(x) & & \text { as }|\exp \{i t x\}| \leq 1 \\
& \leq 2 & & \text { as }|\exp \{i h x\}-1| \leq 2
\end{array}
$$

Further

$$
\begin{aligned}
& x>0:|\exp \{i h x\}-1|=\left|\int_{0}^{h x} e^{i u} d u\right| \leq \int_{0}^{h x}\left|e^{i u}\right| d u=\int_{0}^{h x} d u=h x \\
& x<0:|\exp \{i h x\}-1|=\left|\int_{h x}^{0} e^{i u} d u\right| \leq \int_{h x}^{0}\left|e^{i u}\right| d u=\int_{h x}^{0} d u=-h x
\end{aligned}
$$

and hence $|\exp \{i h x\}-1| \leq|h x|$. Therefore

$$
\begin{equation*}
\left|\varphi_{X}(t+h)-\varphi_{X}(t)\right| \leq \int_{-\infty}^{\infty}|h x| d F_{X}(x) \tag{2}
\end{equation*}
$$

Finally, let $\left\{h_{n}\right\}$ be any sequence such that $h_{n} \longrightarrow 0$ as $n \longrightarrow \infty$. As

$$
\lim _{n \longrightarrow} \int_{-\infty}^{\infty}\left|\exp \left\{i h_{n} x\right\}-1\right| d F_{X}(x) \leq \lim _{n \longrightarrow \infty} \int_{-\infty}^{\infty}\left|h_{n} x\right| d F_{X}(x)
$$

and as $\exp \{i x h\}$ is continuous at zero, we can deduce that

$$
\lim _{h \longrightarrow 0} \int_{-\infty}^{\infty}|\exp \{i h x\}-1| d F_{X}(x) \leq \int_{-\infty}^{\infty} \lim _{n \longrightarrow \infty}\left|h_{n} x\right| d F_{X}(x)=0
$$

using the dominated convergence theorem. Therefore $\left|\varphi_{X}(t+h)-\varphi_{X}(t)\right| \longrightarrow 0$ as $h \longrightarrow 0$, and $\varphi_{X}(t)$ is uniformly continuous in t as the bound in (2) does not depend on t.

- $\varphi_{X}(t)$ is bounded in modulus by $1:\left|\varphi_{X}(t)\right| \leq \mathbb{E}_{X}\left[\left|e^{i t X}\right|\right]=\mathbb{E}_{X}[1]=1$.
- If $Y=a X+b$ for real constants a, b, then

$$
\varphi_{Y}(t)=\mathbb{E}_{Y}[\exp \{i t Y\}]=\mathbb{E}_{X}[\exp \{i t(a X+b)\}]=e^{i t b} \mathbb{E}_{X}[\exp \{i(a t) X\}]=e^{i t b} \varphi_{X}(a t)
$$

- If X is continuous with pdf f_{X} satisfying $f_{X}(x)=f_{X}(-x)$ for all x, then

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty}(\cos (t x)+i \sin (t x)) f_{X}(x) d x=2 \int_{0}^{\infty} \cos (t x) f_{X}(x) d x
$$

is entirely real and has no imaginary part.

Inversion Formulae: To compute f_{X} or F_{X} from φ_{X}, we may use an inversion formula. First, recall that for $x_{1} \in \mathbb{R}$ we are writing

$$
F_{X}\left(x_{1}\right)=P_{X}\left[X \leq x_{1}\right]=P_{X}\left[X=x_{1}\right]+P_{X}\left[X<x_{1}\right] \equiv \int_{-\infty}^{x_{1}} d F_{X}(x)
$$

so that the note that the $d F_{X}(x)$ notation should be interpreted as meaning, for finite x_{1}

$$
\int_{-\infty}^{x_{1}} d F_{X}(x)= \begin{cases}F_{X}\left(x_{1}\right) & F_{X}(x) \text { is continuous at } x_{1} \\ f_{X}\left(x_{1}\right)+\lim _{x \longrightarrow x_{1}^{-}} F_{X}(x) & F_{X}(x) \text { is not continuous at } x_{1}\end{cases}
$$

We can state the inversion formula result as follows:

- Let $\bar{F}_{X}(x)$ be defined by

$$
\bar{F}_{X}(x)=\frac{1}{2}\left\{F_{X}(x)+\lim _{y \xrightarrow{-}} F_{X}(y)\right\} .
$$

Then for $x_{0}<x_{1}$

$$
\bar{F}_{X}\left(x_{1}\right)-\bar{F}_{X}\left(x_{0}\right)=\frac{1}{2 \pi} \lim _{T \longrightarrow \infty} \int_{-T}^{T}\left(\frac{e^{-i x_{0} t}-e^{-i x_{1} t}}{i t}\right) \varphi_{X}(t) d t
$$

- Alternatively if x_{0} and $x_{1}=x_{0}+h$ for $h>0$ are continuity points of F_{X}, then

$$
F_{X}\left(x_{0}+h\right)-F_{X}\left(x_{0}\right)=\frac{1}{2 \pi} \lim _{T \rightarrow \infty} \int_{-T}^{T}\left(\frac{1-e^{-i t h}}{i t}\right) e^{-i t x_{0}} \varphi_{X}(t) d t
$$

or equivalently

$$
F_{X}\left(x_{1}\right)-F_{X}\left(x_{0}\right)=\frac{1}{2 \pi} \lim _{T \longrightarrow \infty} \int_{-T}^{T}\left(\frac{e^{-i t x_{0}}-e^{-i t x_{1}}}{i t}\right) \varphi_{X}(t) d t
$$

The alternative representation relies on considering continuity points of $F_{X}(x)$; this is sufficient, as by definition the number of points of discontinuity (that is, where there are masses of probability) must be countable. But even at the discontinuity points, $F_{X}(x)$ is right-continuous, so we can consider the limit of $F_{X}(x)$ evaluated at continuity points converging to the discontinuity points from above. Thus the behaviour at the continuity points entirely determines $F_{X}(x)$.

Note first that by elementary calculus,

$$
\frac{e^{-i x_{0} t}-e^{-i x_{1} t}}{i t}=\int_{x_{0}}^{x_{1}} e^{-i t u} d u
$$

Therefore

$$
\begin{align*}
\int_{-T}^{T}\left(\frac{e^{-i x_{0} t}-e^{-i x_{1} t}}{i t}\right) \varphi_{X}(t) d t & =\int_{-T}^{T}\left\{\int_{x_{0}}^{x_{1}} e^{-i t u} d u\right\}\left\{\int_{-\infty}^{\infty} e^{i t x} d F_{X}(x)\right\} d t \\
& =\int_{-\infty}^{\infty} \int_{-T}^{T} \int_{x_{0}}^{x_{1}} e^{-i t(u-x)} d u d t d F_{X}(x) \\
& =\int_{-\infty}^{\infty} \int_{-T}^{T} \frac{1}{i t}\left(e^{-i t\left(x_{0}-x\right)}-e^{-i t\left(x_{1}-x\right)}\right) d t d F_{X}(x) \tag{3}
\end{align*}
$$

Denote the inner integral by

$$
g_{1}\left(x_{0}, x_{1}, T, x\right)=\int_{-T}^{T} \frac{1}{i t}\left(e^{-i t\left(x_{0}-x\right)}-e^{-i t\left(x_{1}-x\right)}\right) d t .
$$

Now

$$
e^{-i t\left(x_{0}-x\right)}=\cos \left(t\left(x_{0}-x\right)\right)-i \sin \left(t\left(x_{0}-x\right)\right) \quad e^{-i t\left(x_{1}-x\right)}=\cos \left(t\left(x_{1}-x\right)\right)-i \sin \left(t\left(x_{1}-x\right)\right)
$$

and splitting the integral range $(-T, 0)$ and $(0, T)$, we have that the integral becomes

$$
\begin{gathered}
\int_{-T}^{0} \frac{1}{i t}\left(\cos \left(t\left(x_{0}-x\right)\right)-i \sin \left(t\left(x_{0}-x\right)\right)-\cos \left(t\left(x_{1}-x\right)\right)+i \sin \left(t\left(x_{1}-x\right)\right)\right) d t \\
\quad+\int_{0}^{T} \frac{1}{i t}\left(\cos \left(t\left(x_{0}-x\right)\right)-i \sin \left(t\left(x_{0}-x\right)\right)-\cos \left(t\left(x_{1}-x\right)\right)+i \sin \left(t\left(x_{1}-x\right)\right)\right) d t \\
=-\int_{0}^{T} \frac{1}{i t}\left(\cos \left(t\left(x_{0}-x\right)\right)+i \sin \left(t\left(x_{0}-x\right)\right)-\cos \left(t\left(x_{1}-x\right)\right)-i \sin \left(t\left(x_{1}-x\right)\right)\right) d t \\
\quad+\int_{0}^{T} \frac{1}{i t}\left(\cos \left(t\left(x_{0}-x\right)\right)-i \sin \left(t\left(x_{0}-x\right)\right)-\cos \left(t\left(x_{1}-x\right)\right)+i \sin \left(t\left(x_{1}-x\right)\right)\right) d t \\
g_{1}\left(x_{0}, x_{1}, T, x\right)=2 \int_{0}^{T}\left(\frac{\sin \left(\left(x_{1}-x\right) t\right)}{t}-\frac{\sin \left(\left(x_{0}-x\right) t\right)}{t}\right)=2 g_{2}\left(T, x_{1}-x\right)-2 g_{2}\left(T, x_{0}-x\right) .
\end{gathered}
$$

say, where

$$
g_{2}(T, c)=\int_{0}^{T} \frac{\sin (c t)}{t} d t
$$

This is a standard integral: we have (seehttps://en.wikipedia.org/wiki/Dirichlet_integral)

$$
\bar{g}_{2}(c) \equiv \lim _{T \longrightarrow \infty} g_{2}(T, c)=\int_{0}^{\infty} \frac{\sin (c t)}{t} d t=\left\{\begin{array}{rc}
\pi / 2 & c>0 \\
0 & c=0 \\
-\pi / 2 & c<0
\end{array}\right.
$$

and for any fixed x_{0}, x_{1}, x, we need to compute when $c=x_{0}-x$ and $c=x_{1}-x$. Now
(i) If $x<x_{0}$ or $x>x_{1}$, then $x_{0}-x$ and $x_{1}-x$ have the same sign, so

$$
2 \bar{g}_{2}\left(x_{1}-x\right)-2 \bar{g}_{2}\left(x_{0}-x\right)= \pm(\pi-\pi)=0 .
$$

(ii) If $x_{0}=x$, then $x_{0}-x=0$ and $x_{1}-x>0$, so

$$
2 \bar{g}_{2}\left(x_{1}-x\right)-2 \bar{g}_{2}\left(x_{0}-x\right)=\pi-0=\pi .
$$

(iii) If $x_{1}=x$, then $x_{0}-x<0$ and $x_{1}-x=0$, so

$$
2 \bar{g}_{2}\left(x_{1}-x\right)-2 \bar{g}_{2}\left(x_{0}-x\right)=0-(-\pi)=\pi .
$$

(iv) If $x_{0}<x<x_{1}$, then $x_{0}-x<0$ and $x_{1}-x>0$, so

$$
2 \bar{g}_{2}\left(x_{1}-x\right)-2 \bar{g}_{2}\left(x_{0}-x\right)=\pi-(-\pi)=2 \pi .
$$

Therefore

$$
\lim _{T \rightarrow \infty} g_{1}\left(x_{0}, x_{1}, T, x\right)=\left\{\begin{array}{rc}
0 & x<x_{0} \text { or } x>x_{1} \\
\pi & x=x_{0} \text { or } x=x_{1} \\
2 \pi & x_{0}<x<x_{1}
\end{array}\right.
$$

Because of this we can deduce that $\left|g_{1}\left(x_{0}, x_{1}, T, x\right)\right|$ is bounded, and because $g_{2}(T, c)$ is continuous in T, by the dominated convergence theorem, we can pass the limit under the integral in equation (3), so

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \int_{-T}^{T}\left(\frac{e^{-i x_{0} t}-e^{-i x_{1} t}}{i t}\right) \varphi_{X}(t) d t & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \lim _{T \longrightarrow \infty} g_{1}\left(x_{0}, x_{1}, T, x\right) d F_{X}(x) \\
= & \frac{1}{2 \pi} \int_{x_{0}}^{x_{1}} \lim _{T \longrightarrow \infty} g_{1}\left(x_{0}, x_{1}, T, x\right) d F_{X}(x) \\
= & \frac{1}{\pi} \int_{x_{0}}^{x_{1}}\left(\bar{g}_{2}\left(x_{1}-x\right)-\bar{g}_{2}\left(x_{0}-x\right)\right) d F_{X}(x) \\
= & \frac{f_{X}\left(x_{0}\right)}{\pi}\left(\bar{g}_{2}\left(x_{1}-x_{0}\right)-\bar{g}_{2}\left(x_{0}-x_{0}\right)\right) \\
& +\frac{1}{\pi} \int_{x_{0}^{+}}^{x_{1}^{-}}\left(\bar{g}_{2}\left(x_{1}-x\right)-\bar{g}_{2}\left(x_{0}-x\right)\right) d F_{X}(x) \\
& +\frac{f_{X}\left(x_{1}\right)}{\pi}\left(\bar{g}_{2}\left(x_{1}-x_{1}\right)-\bar{g}_{2}\left(x_{0}-x_{1}\right)\right) \\
= & \frac{f_{X}\left(x_{0}\right)}{2}+\left(F_{X}\left(x_{1}^{-}\right)-F_{X}\left(x_{0}^{+}\right)\right)+\frac{f_{X}\left(x_{1}\right)}{2}
\end{aligned}
$$

which follows using the previous results

$$
\begin{aligned}
\bar{g}_{2}\left(x_{1}-x_{0}\right)-\bar{g}_{2}(0) & =\frac{\pi}{2}=\bar{g}_{2}(0)-\bar{g}_{2}\left(x_{0}-x_{1}\right) \\
\bar{g}_{2}\left(x_{1}-x\right)-\bar{g}_{2}\left(x_{0}-x\right) & =2 \pi \quad x_{0}<x<x_{1}
\end{aligned}
$$

Now

$$
F_{X}\left(x_{1}^{-}\right) \equiv P_{X}\left[X<x_{1}\right]=F_{X}\left(x_{1}\right)-f_{X}\left(x_{1}\right)
$$

and by right-continuity of $F_{X}(x), F_{X}\left(x_{0}^{+}\right)=F_{X}\left(x_{0}\right)$, so we can re-write the final expression as

$$
\left(F_{X}\left(x_{1}\right)-\frac{1}{2} f_{X}\left(x_{1}\right)\right)-\left(F_{X}\left(x_{0}\right)-\frac{1}{2} f_{X}\left(x_{0}\right)\right) .
$$

But note that for arbitrary x

$$
F_{X}(x)-\frac{1}{2} f_{X}(x)=\frac{1}{2} F_{X}(x)+\frac{1}{2}\left(F_{X}(x)-f_{X}(x)\right)=\frac{1}{2} F_{X}(x)+\frac{1}{2} \lim _{y \longrightarrow x^{-}} F_{X}(y) .
$$

Thus

$$
\lim _{T \longrightarrow \infty} \int_{-T}^{T}\left(\frac{e^{-i x_{0} t}-e^{-i x_{1} t}}{i t}\right) \varphi_{X}(t) d t=\bar{F}_{X}\left(x_{1}\right)-\bar{F}_{X}\left(x_{0}\right)
$$

by the definition of $\bar{F}_{X}(x)$.

In certain circumstances we may compute f_{X} from φ_{X} more straightforwardly.
(I) If X is discrete taking values on the integers. Then

$$
\varphi_{X}(t)=\sum_{x=-\infty}^{\infty} e^{i t x} f_{X}(x)
$$

For integers j and x, note that

$$
\int_{-\pi}^{\pi} e^{i(j-x) t} d t=\left\{\begin{array}{cc}
2 \pi & \text { if } x=j \\
0 & \text { if } x \neq j
\end{array}\right.
$$

This follows as if $x \neq j$, setting $k=j-x$, we have that

$$
\int_{-\pi}^{\pi} e^{i(j-x) t} d t=\int_{-\pi}^{\pi} e^{i k t} d t=\int_{-\pi}^{0} e^{i k t} d t+\int_{0}^{\pi} e^{i k t} d t
$$

Then changing $t \longrightarrow-t$ in the first integral, this equates to

$$
\int_{0}^{\infty} e^{-i k t} d t+\int_{0}^{\pi} e^{i k t} d t=2 \int_{0}^{\pi} \cos (k t) d t=0
$$

for $k \neq 0$, by elementary calculus. Thus for any fixed x

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t} \varphi_{X}(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t}\left\{\sum_{j=-\infty}^{\infty} e^{i t j} f_{X}(j)\right\} d t=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty} f_{X}(j) \int_{-\pi}^{\pi} e^{i(j-x) t} d t=f_{X}(x)
$$

as the only non-zero term is when $j=x$. Thus for $x \in \mathbb{Z}$

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t} \varphi_{X}(t) d t
$$

(II) If X is continuous and $\varphi_{X}(t)$ is absolutely integrable, that is,

$$
\int_{-\infty}^{\infty}\left|\varphi_{X}(t)\right| d t<\infty
$$

then

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \varphi_{X}(t) d t
$$

Example: Suppose that for $t \in \mathbb{R}$,

$$
\varphi_{X}(t)=e^{-|t|}
$$

Clearly this function is absolutely integrable wrt t, so we have

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} e^{-|t|} d t=\frac{1}{\pi} \int_{0}^{\infty} \cos (t x) e^{-t} d t
$$

Now recall that the result in equation (1) states that

$$
\int_{0}^{\infty} \cos (t x) e^{-x} d x=\frac{1}{1+t^{2}}
$$

Therefore we may deduce immediately by exchanging the roles of t and x that

$$
\frac{1}{\pi} \int_{0}^{\infty} \cos (t x) e^{-t} d t=\frac{1}{\pi} \frac{1}{1+x^{2}}
$$

Hence we have that $X \sim$ Cauchy.

Diagnosing Discrete or Continuous Distributions

(I) If

$$
\limsup _{|t| \longrightarrow \infty}\left|\varphi_{X}(t)\right|=1
$$

then X is often a discrete random variable. Technically, X may also have a singular distribution - see, for example www.math.mcgill.ca/dstephens/556/Papers/Koopmans.pdf. Such distributions have continuous cdfs which are not absolutely continuous.
(II) If

$$
\limsup _{|t| \longrightarrow \infty}\left|\varphi_{X}(t)\right|=0
$$

then X is continuous; consequently, if

$$
\lim _{|t| \longrightarrow \infty}\left|\varphi_{X}(t)\right|=0
$$

then X is continuous.

Interpreting the characteristic function: To get a further understanding of characteristic function, we consider the inversion formulae. For discrete random variables defined on the integers, we have

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t} \varphi_{X}(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi}[\cos (x t)-i \sin (x t)] \varphi_{X}(t) d t
$$

One way to think about this integral is via a discrete approximation; fix

$$
t_{j, N}=-\pi+\frac{2 \pi j}{N} \quad j=0,1,2, \ldots, N
$$

and write

$$
f_{X}(x) \bumpeq \frac{1}{2 \pi}\left\{\sum_{j=0}^{N} \cos \left(x t_{j, N}\right) \varphi_{X}\left(t_{j, N}\right)-i \sum_{j=0}^{N} \sin \left(x t_{j, N}\right) \varphi_{X}\left(t_{j, N}\right)\right\}
$$

(I) Suppose f_{X} is degenerate at x_{0}, that is,

$$
f_{X}(x)= \begin{cases}1 & x=x_{0} \\ 0 & x \neq x_{0}\end{cases}
$$

Then by elementary calculations

$$
\varphi_{X}(t)=\cos \left(x_{0} t\right)+i \sin \left(x_{0} t\right)
$$

so that

$$
\operatorname{Re}\left(\varphi_{X}(t)\right)=\cos \left(x_{0} t\right) \quad \operatorname{Im}\left(\varphi_{X}(t)\right)=\sin \left(x_{0} t\right)
$$

that is, pure sinusoids with period $2 \pi / x_{0}$.
(II) Suppose f_{X} is discrete, then as above

$$
\varphi_{X}(t)=\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right)+i \sum_{j=1}^{\infty} \sin \left(t x_{j}\right) f_{X}\left(x_{j}\right)
$$

so that

$$
\operatorname{Re}\left(\varphi_{X}(t)\right)=\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right) \quad \operatorname{Im}\left(\varphi_{X}(t)\right)=\sum_{j=1}^{\infty} \sin \left(t x_{j}\right) f_{X}\left(x_{j}\right)
$$

that is, a weighted sum of pure sinusoids with period $2 \pi / x_{1}, 2 \pi / x_{2}, \ldots$, with weights determined by f_{X}

Moments: By a standard series expansion, for $t \in \mathbb{R}$,

$$
\exp \{i t\}=\sum_{r=0}^{\infty} \frac{(i t)^{r}}{r!}
$$

and further, for each $m=1,2, \ldots$

$$
\exp \{i t\}=\sum_{r=0}^{m} \frac{(i t)^{r}}{r!}+R_{m}(t)
$$

where it can be shown that

$$
\left|R_{m}(t)\right| \leq \min \left\{\frac{|t|^{m+1}}{(m+1)!}, \frac{2|t|^{m}}{m!}\right\}
$$

Therefore provided that $\mathbb{E}_{X}\left[X^{m}\right]<\infty$ is finite (so that $\mathbb{E}_{X}\left[X^{r}\right]<\infty, r=1,2, \ldots, m$) it follows that

$$
\begin{aligned}
\varphi_{X}(t) & =\mathbb{E}_{X}[\exp \{i t X\}]=\sum_{r=0}^{m} \frac{(i t)^{r}}{r!} \mathbb{E}_{X}\left[X^{r}\right]+\mathbb{E}_{X}\left[R_{m}(t X)\right] \\
& =1+\sum_{r=1}^{m} \frac{(i t)^{r}}{r!} \mathbb{E}_{X}\left[X^{r}\right]+\mathbb{E}_{X}\left[R_{m}(t X)\right]
\end{aligned}
$$

It can be shown that as $t \longrightarrow 0$,

$$
\frac{\mathbb{E}_{X}\left[R_{m}(t X)\right]}{|t|^{m}} \longrightarrow 0
$$

and hence

$$
\varphi_{X}(t)=1+\sum_{r=1}^{m} \frac{(i t)^{r}}{r!} \mathbb{E}_{X}\left[X^{r}\right]+\mathbf{o}\left(t^{m}\right)
$$

as $t \longrightarrow 0$. This implies that $\varphi_{X}(t)$ is m times differentiable at $t=0$, and

$$
\varphi_{X}^{(r)}(0)=\left.\frac{d^{r} \varphi_{X}(t)}{d t^{r}}\right|_{t=0}=i^{r} \mathbb{E}_{X}\left[X^{r}\right] \quad r=1,2, \ldots, m
$$

In general, the derivatives of $\varphi_{X}(t)$ are not guaranteed to be finite; we can consider

$$
\varphi_{X}^{(r)}(t)=\frac{d^{r}}{d t^{r}}\left\{\varphi_{X}(t)\right\}
$$

but this quantity may not be defined, or finite, at any given t; if $r=1$

$$
\varphi_{X}^{(1)}(t)=\mathbb{E}_{X}[-X \sin (t X)]+i \mathbb{E}_{X}[X \cos (t X)]
$$

but there is no guarantee that either expectation is finite. For example, for the Cauchy distribution

$$
\varphi_{X}(t)=e^{-|t|}
$$

which has undefined derivative at $t=0$.

