Math 556: Mathematical Statistics I

Some Inequalities

1. Jensen's Inequality: A function $g(x)$ is convex if, for $0<\lambda<1$,

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for all x and y. More generally, we have that $g(x)$ is convex if, for $n \geq 2$ and constants $\lambda_{i}, i=$ $1, \ldots, n$, with $0<\lambda_{i}<1$, and $\lambda_{1}+\cdots+\lambda_{n}=1$

$$
g\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} g\left(x_{i}\right)
$$

for all vectors $\left(x_{1}, \ldots, x_{n}\right)$. We may regard this definition as stating

$$
\begin{equation*}
g\left(\mathbb{E}_{F_{n}}[X]\right) \leq \mathbb{E}_{F_{n}}[g(X)] \tag{1}
\end{equation*}
$$

where

$$
\mathbb{E}_{F_{n}}[X]=\int x d F_{n}(x) \quad \mathbb{E}_{F_{n}}[g(X)]=\int g(x) d F_{n}(x)
$$

where

$$
\begin{equation*}
F_{n}(x)=\sum_{i=1}^{n} \lambda_{i} \mathbb{1}_{\left[x_{i}, \infty\right)}(x) . \tag{2}
\end{equation*}
$$

is the cdf of the discrete distribution on $\left\{x_{1}, \ldots, x_{n}\right\}$ with probabilities $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Now, for any F_{X}, we can find infinite sequences $\left\{\left(x_{i}, \lambda_{i}\right), i=1,2, \ldots\right\}$ such that for all x

$$
\lim _{n \longrightarrow \infty} F_{n}(x)=F_{X}(x) .
$$

For example, for $n \geq 2$, using the quantile function $Q_{X}(p)$ corresponding to F_{X} we may take

$$
\lambda_{i}=\frac{i}{n+1} \quad x_{i}=Q_{X}\left(\lambda_{i}\right) \quad \text { for } i=1,2, \ldots, n
$$

As g is convex, it is also continuous, so we may pass limits through the integrals and note that

$$
\lim _{n \longrightarrow \infty} \mathbb{E}_{F_{n}}[X]=\mathbb{E}_{X}[X] \quad \lim _{n \longrightarrow \infty} \mathbb{E}_{F_{n}}[g(X)]=\mathbb{E}_{X}[g(X)]
$$

which yields Jensen's inequality by substitution into (1).
Note: If relevant derivatives are well-defined, another way to view this result uses the tangent to g; for $x_{0}, x \in \mathbb{R}$, by convexity

$$
g(x) \geq g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

which we evaluate for $x_{0}=\mathbb{E}_{X}[X]=\mu$

$$
g(x) \geq g(\mu)+g^{\prime}(\mu)(x-\mu)
$$

so that, replacing x by X and taking expectations we have

$$
\mathbb{E}_{X}[g(X)] \geq g(\mu)+g^{\prime}(\mu)\left(\mathbb{E}_{X}[X]-\mu\right)=g(\mu) .
$$

Equality holds if and only if g is linear.

Function $g(x)$ is convex if for all $x, g^{\prime \prime}(x) \geq 0$. Then

$$
\mathbb{E}_{X}[g(X)] \geq g\left(\mathbb{E}_{X}[X]\right)
$$

with equality if and only if $g(x)$ is linear, that is for every line $a+b x$ that is a tangent to g at μ

$$
P_{X}[g(X)=a+b X]=1
$$

To see this, let $l(x)=a+b x$ be the equation of the tangent at $x=\mu$. Then, for each $x, g(x) \geq a+b x$ as in the figure, and

$$
\mathbb{E}_{X}[g(X)] \geq \mathbb{E}_{X}[a+b X]=a+b \mathbb{E}_{X}[X]=l(\mu)=g(\mu)=g\left(\mathbb{E}_{X}[X]\right) .
$$

If $g(x)$ is linear, then equality follows by properties of expectations. Conversely, suppose that

$$
\mathbb{E}_{X}[g(X)]=g\left(\mathbb{E}_{X}[X]\right)=g(\mu)
$$

but $g(x)$ is convex, but not linear. Let $l(x)=a+b x$ be the tangent to g at μ. Then by convexity we have that $g(x)-l(x)>0$, so

$$
\int(g(x)-l(x)) d F_{X}(x)=\int g(x) d F_{X}(x)-\int l(x) d F_{X}(x)>0
$$

and hence $\mathbb{E}_{X}[g(X)]>\mathbb{E}_{X}[l(X)]$; but $l(x)$ is linear, so $\mathbb{E}_{X}[l(X)]=a+b \mathbb{E}_{X}[X]=g(\mu)$, yielding a contradiction

$$
\mathbb{E}_{X}[g(X)]>g\left(\mathbb{E}_{X}[X]\right)
$$

- If $g(x)$ is concave then $-g(x)$ is convex, and $\mathbb{E}_{X}[g(X)] \leq g\left(\mathbb{E}_{X}[X]\right)$
- $g(x)=x^{2}$ is convex, thus $\mathbb{E}_{X}\left[X^{2}\right] \geq\left\{\mathbb{E}_{X}[X]\right\}^{2}$
- $g(x)=\log x$ is concave, thus $\mathbb{E}_{X}[\log X] \leq \log \left\{\mathbb{E}_{X}[X]\right\}$

2. Chebychev's Lemma: If X is a random variable, then for non-negative function h, and $c>0$,

$$
P_{X}[h(X) \geq c] \leq \frac{\mathbb{E}_{X}[h(X)]}{c}
$$

Proof Suppose that X has mass or density function f_{X} with support \mathbb{K}. Let $\mathcal{A}=\{x \in \mathbb{X}: h(x) \geq c\}$. Then, as $h(x) \geq c$ on \mathcal{A},

$$
\begin{aligned}
\mathbb{E}_{X}[h(X)]=\int h(x) d F_{X}(x) & =\int_{\mathcal{A}} h(x) d F_{X}(x)+\int_{\mathcal{A}^{\prime}} h(x) d F_{X}(x) \\
& \geq \int_{\mathcal{A}} h(x) d F_{X}(x) \\
& \geq \int_{\mathcal{A}} c d F_{X}(x)=c P_{X}[X \in \mathcal{A}]=c P_{X}[h(X) \geq c]
\end{aligned}
$$

and the result follows.

- Special Case I: The Markov Inequality If $h(x)=|x|^{r}$ for $r>0$, so

$$
P_{X}\left[|X|^{r} \geq c\right] \leq \frac{\mathbb{E}_{X}\left[|X|^{r}\right]}{c}
$$

Alternately: if $P_{Y}[Y \geq 0]=1$ and $P_{Y}[Y=0]<1$, then for any $r>0$

$$
P_{Y}[Y \geq r] \leq \frac{\mathbb{E}_{Y}[Y]}{r}
$$

with equality if and only if

$$
P_{Y}[Y=r]=p=1-P_{Y}[Y=0]
$$

for some $0<p \leq 1$.

- Special Case II: The Chebychev Inequality Suppose that X is a random variable with expectation μ and variance σ^{2}. Then $h(x)=(x-\mu)^{2}$ and $c=k^{2} \sigma^{2}$, for $k>0$,

$$
P_{X}\left[(X-\mu)^{2} \geq k^{2} \sigma^{2}\right] \leq 1 / k^{2}
$$

or equivalently

$$
P_{X}[|X-\mu| \geq k \sigma] \leq 1 / k^{2} .
$$

Setting $\epsilon=k \sigma$ gives

$$
P_{X}[|X-\mu| \geq \epsilon] \leq \sigma^{2} / \epsilon^{2}
$$

or equivalently

$$
P_{X}[|X-\mu|<\epsilon] \geq 1-\sigma^{2} / \epsilon^{2} .
$$

3. Cauchy-Schwarz Inequality: For random variable X and functions $g_{1}()$ and $g_{2}()$, we have that

$$
\begin{equation*}
\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2} \leq \mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right] \tag{3}
\end{equation*}
$$

with equality if and only if either $\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right]=0$ or $\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]=0$, or

$$
P_{X}\left[g_{1}(X)=c g_{2}(X)\right]=1
$$

for some $c \neq 0$.

Proof Let $X_{1}=g_{1}(X)$ and $X_{2}=g_{2}(X)$, and let

$$
Y_{1}=a X_{1}+b X_{2} \quad Y_{2}=a X_{1}-b X_{2}
$$

and as $\mathbb{E}_{Y_{1}}\left[Y_{1}^{2}\right], \mathbb{E}_{Y_{2}}\left[Y_{2}^{2}\right] \geq 0$, we have that

$$
\begin{aligned}
& a^{2} \mathbb{E}_{X}\left[X_{1}^{2}\right]+b^{2} \mathbb{E}_{X}\left[X_{2}^{2}\right]+2 a b \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0 \\
& a^{2} \mathbb{E}_{X}\left[X_{1}^{2}\right]+b^{2} \mathbb{E}_{X}\left[X_{2}^{2}\right]-2 a b \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0
\end{aligned}
$$

Set $a^{2}=\mathbb{E}_{X}\left[X_{2}^{2}\right]$ and $b^{2}=\mathbb{E}_{X}\left[X_{1}^{2}\right]$. If either a or b is zero, the inequality clearly holds. We may thus consider $\mathbb{E}_{X}\left[X_{1}^{2}\right], \mathbb{E}_{X}\left[X_{2}^{2}\right]>0$: we have

$$
\begin{aligned}
& 2 \mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]+2\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2} \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0 \\
& 2 \mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]-2\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2} \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0
\end{aligned}
$$

Rearranging, we obtain that

$$
-\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2} \leq \mathbb{E}_{X}\left[X_{1} X_{2}\right] \leq\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2}
$$

that is $\left\{\mathbb{E}_{X}\left[X_{1} X_{2}\right]\right\}^{2} \leq \mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]$ or, in the original form

$$
\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2} \leq \mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right] .
$$

Now, for equality:

$$
\begin{equation*}
\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2}=\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right] \tag{4}
\end{equation*}
$$

- If $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]=0$ for $j=1$ or 2 , then $P_{X}\left[g_{j}(X)=0\right]=1$. The left-hand side of (3) is certainly non-negative, so must be zero.
- If $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]>0$ for $j=1,2$, but $g_{1}(X)=c g_{2}(X)$ with probability one for some $c \neq 0$. In this case we replace $g_{1}(X)$ in the left- and right- hand sides of (3) to conclude that

$$
\left\{\mathbb{E}_{X}\left[c g_{2}(X)^{2}\right]\right\}^{2}=\mathbb{E}_{X}\left[\left\{c g_{2}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]=c^{2} \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]
$$

and equality follows. Conversely, assume that (4) holds. If both sides equate to zero, then we must have at least one term on the right-hand side equal to zero, so $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]=0$ for $j=1$ or 2 . If both sides equate to a positive constant then both $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]>0$ so

$$
\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right]=\frac{\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2}}{\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]}
$$

Let $Z=g_{1}(X)-c g_{2}(X)$. Assume that Z is not zero with probability 1 : we then have

$$
0<\mathbb{E}_{Z}\left[Z^{2}\right]=\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right]+c^{2} \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]-2 c \mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]
$$

However the right-hand side can be written,

$$
\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right]+\left(c\left\{\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]\right\}^{1 / 2}-\frac{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]}{\left\{\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]\right\}^{1 / 2}}\right)^{2}-\left(\frac{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]}{\left\{\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]\right\}^{1 / 2}}\right)^{2}
$$

Now if we set

$$
c=\frac{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]}{\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]}
$$

the second term is zero, so we must then have

$$
\mathbb{E}\left[\left\{g_{1}(X)\right\}^{2}\right]-\frac{\left\{\mathbb{E}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2}}{\mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]}>0
$$

but this contradicts assumption (4). Hence Z must be zero with probability 1 , that is $g_{1}(X)=$ $c g_{2}(X)$ with probability 1.
4. Hölder's Inequality: Suppose $p, q>1$ satisfy $p^{-1}+q^{-1}=1$. Then

$$
\left|\mathbb{E}_{X, Y}[X Y]\right| \leq \mathbb{E}_{X, Y}[|X Y|] \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}
$$

for random variables X and Y
Lemma Let $a, b>0$ and $p, q>1$ satisfy $p^{-1}+q^{-1}=1$. Then

$$
p^{-1} a^{p}+q^{-1} b^{q} \geq a b
$$

with equality if and only if $a^{p}=b^{q}$. To see this, fix $b>0$. Let

$$
g(a ; b)=p^{-1} a^{p}+q^{-1} b^{q}-a b .
$$

We require that $g(a ; b) \geq 0$ for all a. Differentiating wrt a for fixed b yields $g^{(1)}(a ; b)=a^{p-1}-b$, so that $g(a ; b)$ is minimized (the second derivative is strictly positive at all a) when $a^{p-1}=b$, and at this value of a, the function takes the value

$$
p^{-1} a^{p}+q^{-1}\left(a^{p-1}\right)^{q}-a\left(a^{p-1}\right)=p^{-1} a^{p}+q^{-1} a^{p}-a^{p}=0
$$

as, $1 / p+1 / q=1 \Longrightarrow(p-1) q=p$. As the second derivative is strictly positive at all a, the minimum is attained at the unique value of a where $a^{p-1}=b$, where, raising both sides to power q yields $a^{p}=b^{q}$.

Proof (of Hölder's Inequality, given in the continuous case) For the first inequality,

$$
\mathbb{E}_{X, Y}[|X Y|]=\iint|x y| f_{X, Y}(x, y) d x d y \geq \iint x y f_{X, Y}(x, y) d x d y=\mathbb{E}_{X, Y}[X Y]
$$

and

$$
\mathbb{E}_{X, Y}[X Y]=\iint x y f_{X, Y}(x, y) d x d y \geq \iint-|x y| f_{X, Y}(x, y) d x d y=-\mathbb{E}_{X, Y}[|X Y|]
$$

so

$$
-\mathbb{E}_{X, Y}[|X Y|] \leq \mathbb{E}_{X, Y}[X Y] \leq \mathbb{E}_{X, Y}[|X Y|] \quad \therefore \quad\left|\mathbb{E}_{X, Y}[X Y]\right| \leq \mathbb{E}_{X, Y}[|X Y|] .
$$

For the second inequality, using

$$
a=\frac{|X|}{\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}} \quad b=\frac{|Y|}{\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}} .
$$

in the lemma, we have that

$$
p^{-1} \frac{|X|^{p}}{\mathbb{E}_{X}\left[|X|^{p}\right]}+q^{-1} \frac{|Y|^{q}}{\mathbb{E}_{Y}\left[|Y|^{q}\right]} \geq \frac{|X Y|}{\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and taking expectations yields, on the left hand side,

$$
p^{-1} \frac{\mathbb{E}_{X}\left[|X|^{p}\right]}{\mathbb{E}_{X}\left[|X|^{p]}\right]}+q^{-1} \frac{\mathbb{E}_{Y}\left[|Y|^{q}\right]}{\mathbb{E}_{Y}\left[|Y|^{q}\right]}=p^{-1}+q^{-1}=1
$$

and on the right hand side

$$
\frac{\mathbb{E}_{X, Y}[|X Y|]}{\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and the result follows.
Note: here we have equality if and only if

$$
P_{X, Y}\left[|X|^{p}=c|Y|^{q}\right]=1
$$

for some non zero constant c.

Corollaries:

(a) Setting $p=q=2$ in the Hölder Inequality, we have

$$
\left|\mathbb{E}_{X, Y}[X Y]\right| \leq \mathbb{E}_{X, Y}[|X Y|] \leq\left\{\mathbb{E}_{X}\left[|X|^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}_{Y}\left[|Y|^{2}\right]\right\}^{1 / 2}
$$

as in the Cauchy-Schwarz inequality.
(b) Let μ_{X} and μ_{Y} denote the expectations of X and Y respectively. Then

$$
\left|\mathbb{E}_{X, Y}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]\right| \leq\left\{\mathbb{E}_{X}\left[\left(X-\mu_{X}\right)^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}_{Y}\left[\left(Y-\mu_{Y}\right)^{2}\right]\right\}^{1 / 2}
$$

so that
CORRECTED $\left\{\mathbb{E}_{X, Y}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]\right\}^{2} \leq \mathbb{E}_{X}\left[\left(X-\mu_{X}\right)^{2}\right] \mathbb{E}_{Y}\left[\left(Y-\mu_{Y}\right)^{2}\right]$
and defining the left-hand side as the square of the covariance between X and $Y, \operatorname{Cov}_{X, Y}[X, Y]$, we have

$$
\left\{\operatorname{Cov}_{X, Y}[X, Y]\right\}^{2} \leq \operatorname{Var}_{X}[X] \operatorname{Var}_{Y}[Y] .
$$

(c) Lyapunov's Inequality: Suppose $P_{Y}[Y=1]=1$. Then, for $1<p<\infty$

$$
\mathbb{E}_{X}[|X|] \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}
$$

Let $1<r<p$. Then

$$
\mathbb{E}_{X}\left[|X|^{r}\right] \leq\left\{\mathbb{E}_{X}\left[|X|^{p r}\right]\right\}^{1 / p}
$$

and letting $s=p r>r$ yields

$$
\mathbb{E}_{X}\left[|X|^{r}\right] \leq\left\{\mathbb{E}_{X}\left[|X|^{s}\right]\right\}^{r / s}
$$

so that

$$
\left\{\mathbb{E}_{X}\left[|X|^{r}\right]\right\}^{1 / r} \leq\left\{\mathbb{E}_{X}\left[|X|^{s}\right]\right\}^{1 / s}
$$

for $1<r<s<\infty$.
(d) Minkowski's Inequality: Suppose that $1 \leq p<\infty$. Then

$$
\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{\mathbb{E}_{Y}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

for random variables X and Y.
Proof Write

$$
\begin{aligned}
\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right] & =\mathbb{E}_{X, Y}\left[|X+Y \| X+Y|^{p-1}\right] \\
& \leq \mathbb{E}_{X, Y}\left[|X||X+Y|^{p-1}\right]+\mathbb{E}_{X, Y}\left[|Y||X+Y|^{p-1}\right]
\end{aligned}
$$

by the triangle inequality $|x+y| \leq|x|+|y|$. Using Hölder's Inequality on the terms on the right hand side, for q selected to satisfy $1 / p+1 / q=1$,

$$
\begin{aligned}
& \mathbb{E}_{X, Y}\left[|X+Y|^{p}\right] \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q} \\
&+\left\{\mathbb{E}_{Y}\left[|Y|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}
\end{aligned}
$$

and dividing through by $\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$ yields

$$
\frac{\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right]}{\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}} \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{\mathbb{E}_{Y}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

and the result follows as $q(p-1)=p$, and $1-1 / q=1 / p$.

