MATH 556: MATHEMATICAL STATISTICS I

SOME INEQUALITIES
1. Jensen’s Inequality: A function g(z) is convex if, for 0 < A < 1,

gz + (1= N)y) < Ag(z) + (1 —N)g(y)

for all z and y. More generally, we have that g(z) is convex if, for n > 2 and constants \;,i =
1,...,n,withO< \; <l,and A\ +---+ N\, =1

g (Z Ai%’) <> g ()
i=1 i=1
for all vectors (x1, ..., x,). We may regard this definition as stating

¢ (Ep,[X]) < Ep, [g(X) 1)
where

0 X = e Erl0) = [ o) dR (@)
where

Fu(z) =Y Ailjp, 00) (@) 2)
=1

is the cdf of the discrete distribution on {x1, . .., x, } with probabilities {\1, ..., A, }. Now, for any
Fx, we can find infinite sequences {(z;, \;),% = 1,2, ...} such that for all =

lim F,(z) = Fx(z).

n—ao0
For example, for n > 2, using the quantile function Q x (p) corresponding to F'x we may take
l

Ai:n—{—l xz‘:Qx()\i) fori=1,2,...,n.

As g is convex, it is also continuous, so we may pass limits through the integrals and note that

lim Ep, [X] = Ex[X] lim Ep,[g(X)] = Ex[g(X)]

n—ao0 n—-ao0

which yields Jensen’s inequality by substitution into (1).

Note: If relevant derivatives are well-defined, another way to view this result uses the tangent to
g; for g,z € R, by convexity

9(x) = g(wo) + g'(zo)(x — z0)
which we evaluate for zy = Ex[X] = p
9(x) = g(n) + ¢’ (W)(x — )
so that, replacing x by X and taking expectations we have

Ex[g(X)] > g(p) + ¢’ (u)(Ex[X] — p) = g(p).

Equality holds if and only if g is linear.



Function g(x) is convex if for all z, ¢"(x) > 0. Then
Ex [9(X)] > g(Ex [X])
with equality if and only if g(z) is linear, that is for every line a + bz that is a tangent to g at i
Px[g(X)=a+bX]|=1.
To see this, let I(z) = a+bx be the equation of the tangent at x = . Then, for each z, g(z) > a+bx
as in the figure, and

Ex[9(X)] = Exla +bX] = a + bEx[X] = I(1) = g(p) = 9(Ex[X]).

. “I(x):a+bx

If g(x) is linear, then equality follows by properties of expectations. Conversely, suppose that
Ex [9(X)] = g(Ex [X]) = g(n)

but g(z) is convex, but not linear. Let [(z) = a + bz be the tangent to g at 1. Then by convexity
we have that g(x) — I(z) > 0, so
[(ol2) = 1@) aFx(a) = [ g(a) aFx(@) - [ 1) dFx (@) >0
and hence Ex[g(X)] > Ex[l(X)]; but I(z) is linear, so Ex [[(X)] = a + bEx [X] = g(p), yielding a
contradiction
Ex[9(X)] > g(Ex[X]).
e If g(z) is concave then —g(z) is convex, and Ex [¢(X)] < g(Ex [X])

e g(z) = 2? is convex, thus Ex [X?] > {Ex [X]}?
* g(x) = logx is concave, thus Ex [log X| < log {Ex [X]}



2. Chebychev’s Lemma: If X is a random variable, then for non-negative function h, and ¢ > 0,

Ex [2(X)]

Px[h<X)>C]< c

Proof Suppose that X has mass or density function fx with support X. Let A = {z € X : h(z) > c}.
Then, as h(z) > con A,

Ex [h(X)] = [ hw) aPx(e) = [ hw)aPx@)+ [ ) drs)
> /,4 h(z) dF ()

> / cdFx(z)=cPx[X € Al =cPx [h(X) > ]
A

and the result follows.

* Special Case I: The Markov Inequality If h(z) = |z|" for r > 0, so

XT’
Px [|X]" > d Sw_
Cc

Alternately: if Py[Y > 0] =1and Py[Y =0] < 1, then forany r > 0

Ey [Y]

PylY >r| <
,

with equality if and only if

forsome 0 < p < 1.

¢ Special Case II: The Chebychev Inequality Suppose that X is a random variable with ex-
pectation ;i and variance 2. Then h(z) = (z — p)? and ¢ = k2?02, for k > 0,

Py [(X 2> k:QUQ} <1/k?
or equivalently
Px | X — p| > ko] < 1/k2.
Setting € = ko gives
Px[|X —p| > e < o®/é
or equivalently
Px[|X —p| <€ >1-02/.



3. Cauchy-Schwarz Inequality: For random variable X and functions ¢;() and g2(), we have that
{Ex[91(X)g2(X)]}? < Ex[{g1(X)}*)Ex[{g2(X)}?] 3)
with equality if and only if either Ex[{g1(X)}?] = 0 or Ex[{g2(X)}*] =0, or
Px[g1(X) = cg2(X)] =1

for some ¢ # 0.

Proof Let X1 = ¢1(X) and Xy = g2(X), and let

Y = aXy +0Xo Yo =aX; — bXy

and as Ey, [Y?], Ey,[Y$] > 0, we have that
a’Ex[X3] 4+ b®Ex[X3] + 2abEx [X1X2] > 0
a®’Ex[ X3 + b*Ex[X3] — 2abEx[X1X2] > 0

Set a? = Ex[X3] and b = Ex[X?]. If either a or b is zero, the inequality clearly holds. We may
thus consider Ex[X?], Ex[X3] > 0: we have

2Ex [XT]Ex [X3] + 2{Ex [XF)Ex [X3]} 2 Ex[X1 X0] > 0
2Ex [XT]Ex[X3] — 2{Ex [XT)Ex [X3]} 2 Ex[X1 X0] > 0
Rearranging, we obtain that
—{Ex[XPEX[X3}/? < Ex[X1Xa] < {Ex[XF]Ex[X3]}'/?
that is {Ex[X1X2]}? < Ex[X2Ex[X2] or, in the original form
{Ex[1(X)g2(X)}* < Ex[{g1(X)}*Ex [{g2(X)}].
Now, for equality:
{Ex[g1(X)g2(X)]}* = Ex[{g1(X)}*Ex[{g2(X)}?] (4)

o If Ex[{gj(X)}?] = 0 for j = 1 or 2, then Px[g;j(X) = 0] = 1. The left-hand side of (3) is
certainly non-negative, so must be zero.

o IfEx[{g;(X)}?] > 0forj =1,2,but g1 (X) = cg2(X) with probability one for some ¢ # 0. In
this case we replace g; (X) in the left- and right- hand sides of (3) to conclude that

{Exleg2(X)*]}? = Ex[{eg2(X) P|Ex [{92(X)}?] = Ex [{g2(X)}”]

and equality follows. Conversely, assume that (4) holds. If both sides equate to zero, then
we must have at least one term on the right-hand side equal to zero, so Ex[{g;(X)}?] = 0
for j = 1 or 2. If both sides equate to a positive constant then both Ex [{g;(X)}?] > 0 so

2
o0y = EOROON




Let Z = g1(X) — cg2(X). Assume that Z is not zero with probability 1: we then have
0 < E£[2°] = Ex[{g1(X)}*] + ’Ex[{g2(X)}?] — 2¢Ex[g1(X ) g2(X)]

However the right-hand side can be written,

Ex[91(X)g2(X)] )_( Ex[g1(X)g2(X)] )
{Ex[{g2(X)}2]}172 {Ex[{g2(X)}2]}1/2

Exon COY]+ (elEx o)) 2 -

Now if we set
_ Ex[g1(X)g2(X)]

Ex[{g2(X)}?]
the second term is zero, so we must then have

{E[g1(X)g2(X)]}?
E[{g2(X)}?]

but this contradicts assumption (4). Hence Z must be zero with probability 1, thatis g; (X)) =
cg2(X) with probability 1.

El{g1(X)}?] — >0

4. Hélder’s Inequality: Suppose p, ¢ > 1 satisfy p~* + ¢~! = 1. Then
[Exy[XY]| < Exy[|XY]] < {Ex[IX[P]}/? {Ey[|V]7]}"/1
for random variables X and Y
Lemma Leta,b> 0andp,q > 1satisfy p~! + ¢~ = 1. Then
pra? + ¢ b7 > ab
with equality if and only if a” = 09. To see this, fix b > 0. Let
gla;b) =p~ta? +q b1 — ab.

We require that g(a;b) > 0 for all a. Differentiating wrt a for fixed b yields g™V (a;b) = a1 — b,
so that g(a; b) is minimized (the second derivative is strictly positive at all ) when a?~! = b, and
at this value of a, the function takes the value

plraf +q (@ —a@ ) =ptaP +qgtaP —af =0

as, 1/p+1/¢g =1 = (p— 1)¢ = p. As the second derivative is strictly positive at all a, the
minimum is attained at the unique value of a where a?~! = b, where, raising both sides to power
q yields a? = b1.

Proof (of Holder’s Inequality, given in the continuous case) For the first inequality,
Exy XY = [ [ lovlfxy (o) dody > [ [ afse) do dy=Exy (XY
and

Exy[XY]= //Sﬂny,Y(%y) dx dy > //_$y|fX,Y($ay) de dy = —Exy[| XY

SO
“Exy[[XY[[<Exy[XY]<Exy[XY[] .. [Exy[XY]| <Exy[|XY]].

5



For the second inequality, using
_ | X _ Y|
“= 1/p b= 1/q°
{Ex[|I X1} {Ev[[Y]7]}

in the lemma, we have that

S N | XV
Ex [|-X[7] Ev (Y] = {Ex[|X[P]}/? {Ey[|Y]a]}/4
and taking expectations yields, on the left hand side,
S ExUXPT O B[V
1 EX 1 1 1
B I = + =1
Ex(Xp] Y Evvig " T

and on the right hand side
Exy[XY]]

{Ex[IX[P}P {Ey (Y]}

and the result follows.
Note: here we have equality if and only if

Pxy[IX[P = c|Y]7) = 1
for some non zero constant c.

Corollaries:

(a) Setting p = ¢ = 2 in the Holder Inequality, we have
[Exy[XY]| < Exy[XY]) < {Ex[X]’]}"* {Ex [V P}
as in the Cauchy-Schwarz inequality.

(b) Let uy and py denote the expectations of X and Y respectively. Then

Exy[(X = ux)(Y =py)]| < {Ex[(X — px)? ]} P {Ex [(V — uy)2]} 2

so that
ICORRECTED [{Ex,y [(X — pix) (Y — py)]}? < Ex[(X — p1x)2|Ey [(V — pry)?]

and defining the left-hand side as the square of the covariance between X and Y, Covx y[X,Y],
we have

{Covxy[X,Y]}? < Varx[X] Vary[Y].

(c) Lyapunov’s Inequality: Suppose Py[Y = 1] = 1. Then, for 1 < p < oo
Ex (X)) < {Ex[XP]}”.

Let1 < r < p. Then
Ex[|X|"] < {Ex[|X[""]}"/?

and letting s = pr > r yields
Ex[IX[") < {Ex[IX]")}""

so that
{EXIIXHY < {ExlIXITH

forl <r < s < oo.
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(d) Minkowski’s Inequality: Suppose that 1 < p < co. Then
{Exy X + VPP < (Ex(IXPIP + {Ev (Y

for random variables X and Y.

Proof Write

Exy[X +Y[P] = Exy[[X+Y[X+Y]P]

< Exy[X|IX +YPT+ Exy[[VIIX +Y P

by the triangle inequality |z + y| < |z| + |y|. Using Holder’s Inequality on the terms on the
right hand side, for ¢ selected to satisfy 1/p+1/¢ =1,

1/q
Exy[|X +Y]P] < {[EXHX‘P]}l/p {[EX,YHX + Y‘q(p—l)]}

BV P {Exylix + v o0}

and dividing through by {Ex,y[|X + Y|‘1(p_1)]}1/q yields

Exy[|X + Y]
{Exy[IX +Y -]}

< {Ex[|XPP]}"? + {Ey[[YP]}'/7

and the result follows as ¢(p — 1) =p,and 1 — 1 /g = 1/p.





