
MATH 556: MATHEMATICAL STATISTICS I

SOME INEQUALITIES

1. Jensen’s Inequality: A function g(x) is convex if, for 0 < λ < 1,

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for all x and y. More generally, we have that g(x) is convex if, for n ≥ 2 and constants λi, i =
1, . . . , n, with 0 < λi < 1, and λ1 + · · ·+ λn = 1

g

(
n∑

i=1

λixi

)
≤

n∑
i=1

λig (xi)

for all vectors (x1, . . . , xn). We may regard this definition as stating

g (EFn [X]) ≤ EFn [g(X)] (1)

where
EFn [X] =

∫
x dFn(x) EFn [g(X)] =

∫
g(x) dFn(x)

where

Fn(x) =

n∑
i=1

λi1[xi,∞)(x). (2)

is the cdf of the discrete distribution on {x1, . . . , xn} with probabilities {λ1, . . . , λn}. Now, for any
FX , we can find infinite sequences {(xi, λi), i = 1, 2, . . .} such that for all x

lim
n−→∞

Fn(x) = FX(x).

For example, for n ≥ 2, using the quantile function QX(p) corresponding to FX we may take

λi =
i

n+ 1
xi = QX(λi) for i = 1, 2, . . . , n.

As g is convex, it is also continuous, so we may pass limits through the integrals and note that

lim
n−→∞

EFn [X] = EX [X] lim
n−→∞

EFn [g(X)] = EX [g(X)]

which yields Jensen’s inequality by substitution into (1).

Note: If relevant derivatives are well-defined, another way to view this result uses the tangent to
g; for x0, x ∈ R, by convexity

g(x) ≥ g(x0) + g′(x0)(x− x0)

which we evaluate for x0 = EX [X] = µ

g(x) ≥ g(µ) + g′(µ)(x− µ)

so that, replacing x by X and taking expectations we have

EX [g(X)] ≥ g(µ) + g′(µ)(EX [X]− µ) = g(µ).

Equality holds if and only if g is linear.
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Function g(x) is convex if for all x, g′′(x) ≥ 0. Then

EX [g(X)] ≥ g(EX [X])

with equality if and only if g(x) is linear, that is for every line a+ bx that is a tangent to g at µ

PX [g(X) = a+ bX] = 1.

To see this, let l(x) = a+bx be the equation of the tangent at x = µ. Then, for each x, g(x) ≥ a+bx
as in the figure, and

EX [g(X)] ≥ EX [a+ bX] = a+ bEX [X] = l(µ) = g(µ) = g(EX [X]).
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If g(x) is linear, then equality follows by properties of expectations. Conversely, suppose that

EX [g(X)] = g(EX [X]) = g(µ)

but g(x) is convex, but not linear. Let l(x) = a + bx be the tangent to g at µ. Then by convexity
we have that g(x)− l(x) > 0, so∫

(g(x)− l(x)) dFX(x) =

∫
g(x) dFX(x)−

∫
l(x) dFX(x) > 0

and hence EX [g(X)] > EX [l(X)]; but l(x) is linear, so EX [l(X)] = a+ bEX [X] = g(µ), yielding a
contradiction

EX [g(X)] > g(EX [X]).

• If g(x) is concave then −g(x) is convex, and EX [g(X)] ≤ g(EX [X])

• g(x) = x2 is convex, thus EX

[
X2
]
≥ {EX [X]}2

• g(x) = log x is concave, thus EX [logX] ≤ log {EX [X]}
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2. Chebychev’s Lemma: If X is a random variable, then for non-negative function h, and c > 0,

PX [h(X) ≥ c] ≤ EX [h(X)]

c

Proof Suppose that X has mass or density function fX with support X. Let A = {x ∈ X : h(x) ≥ c}.
Then, as h(x) ≥ c on A,

EX [h(X)] =

∫
h(x) dFX(x) =

∫
A
h(x) dFX(x) +

∫
A′
h(x) dFX(x)

≥
∫
A
h(x) dFX(x)

≥
∫
A
c dFX(x) = c PX [X ∈ A] = c PX [h(X) ≥ c]

and the result follows.

• Special Case I: The Markov Inequality If h(x) = |x|r for r > 0, so

PX [|X|r ≥ c] ≤ EX [|X|r]
c

.

Alternately: if PY [Y ≥ 0] = 1 and PY [Y = 0] < 1, then for any r > 0

PY [Y ≥ r] ≤ EY [Y ]

r

with equality if and only if

PY [Y = r] = p = 1− PY [Y = 0]

for some 0 < p ≤ 1.

• Special Case II: The Chebychev Inequality Suppose that X is a random variable with ex-
pectation µ and variance σ2. Then h(x) = (x− µ)2 and c = k2σ2, for k > 0,

PX

[
(X − µ)2 ≥ k2σ2

]
≤ 1/k2

or equivalently
PX [|X − µ| ≥ kσ] ≤ 1/k2.

Setting ϵ = kσ gives
PX [|X − µ| ≥ ϵ] ≤ σ2/ϵ2

or equivalently
PX [|X − µ| < ϵ] ≥ 1− σ2/ϵ2.
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3. Cauchy-Schwarz Inequality: For random variable X and functions g1() and g2(), we have that

{EX [g1(X)g2(X)]}2 ≤ EX [{g1(X)}2]EX [{g2(X)}2] (3)

with equality if and only if either EX [{g1(X)}2] = 0 or EX [{g2(X)}2] = 0, or

PX [g1(X) = cg2(X)] = 1

for some c ̸= 0.

Proof Let X1 = g1(X) and X2 = g2(X), and let

Y1 = aX1 + bX2 Y2 = aX1 − bX2

and as EY1 [Y
2
1 ],EY2 [Y

2
2 ] ≥ 0, we have that

a2EX [X2
1 ] + b2EX [X2

2 ] + 2abEX [X1X2] ≥ 0

a2EX [X2
1 ] + b2EX [X2

2 ]− 2abEX [X1X2] ≥ 0

Set a2 = EX [X2
2 ] and b2 = EX [X2

1 ]. If either a or b is zero, the inequality clearly holds. We may
thus consider EX [X2

1 ],EX [X2
2 ] > 0: we have

2EX [X2
1 ]EX [X2

2 ] + 2{EX [X2
1 ]EX [X2

2 ]}1/2EX [X1X2] ≥ 0

2EX [X2
1 ]EX [X2

2 ]− 2{EX [X2
1 ]EX [X2

2 ]}1/2EX [X1X2] ≥ 0

Rearranging, we obtain that

−{EX [X2
1 ]EX [X2

2 ]}1/2 ≤ EX [X1X2] ≤ {EX [X2
1 ]EX [X2

2 ]}1/2

that is {EX [X1X2]}2 ≤ EX [X2
1 ]EX [X2

2 ] or, in the original form

{EX [g1(X)g2(X)]}2 ≤ EX [{g1(X)}2]EX [{g2(X)}2].

Now, for equality:
{EX [g1(X)g2(X)]}2 = EX [{g1(X)}2]EX [{g2(X)}2] (4)

• If EX [{gj(X)}2] = 0 for j = 1 or 2, then PX [gj(X) = 0] = 1. The left-hand side of (3) is
certainly non-negative, so must be zero.

• If EX [{gj(X)}2] > 0 for j = 1, 2, but g1(X) = cg2(X) with probability one for some c ̸= 0. In
this case we replace g1(X) in the left- and right- hand sides of (3) to conclude that

{EX [cg2(X)2]}2 = EX [{cg2(X)}2]EX [{g2(X)}2] = c2EX [{g2(X)}2]

and equality follows. Conversely, assume that (4) holds. If both sides equate to zero, then
we must have at least one term on the right-hand side equal to zero, so EX [{gj(X)}2] = 0
for j = 1 or 2. If both sides equate to a positive constant then both EX [{gj(X)}2] > 0 so

EX [{g1(X)}2] = {EX [g1(X)g2(X)]}2

EX [{g2(X)}2]
.
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Let Z = g1(X)− cg2(X). Assume that Z is not zero with probability 1: we then have

0 < EZ [Z
2] = EX [{g1(X)}2] + c2EX [{g2(X)}2]− 2cEX [g1(X)g2(X)]

However the right-hand side can be written,

EX [{g1(X)}2] +
(
c{EX [{g2(X)}2]}1/2 − EX [g1(X)g2(X)]

{EX [{g2(X)}2]}1/2

)2

−
(

EX [g1(X)g2(X)]

{EX [{g2(X)}2]}1/2

)2

Now if we set

c =
EX [g1(X)g2(X)]

EX [{g2(X)}2]
the second term is zero, so we must then have

E[{g1(X)}2]− {E[g1(X)g2(X)]}2

E[{g2(X)}2]
> 0

but this contradicts assumption (4). Hence Z must be zero with probability 1, that is g1(X) =
cg2(X) with probability 1.

4. Hölder’s Inequality: Suppose p, q > 1 satisfy p−1 + q−1 = 1. Then

|EX,Y [XY ]| ≤ EX,Y [|XY |] ≤ {EX [|X|p]}1/p {EY [|Y |q]}1/q

for random variables X and Y

Lemma Let a, b > 0 and p, q > 1 satisfy p−1 + q−1 = 1. Then

p−1 ap + q−1 bq ≥ ab

with equality if and only if ap = bq. To see this, fix b > 0. Let

g(a; b) = p−1 ap + q−1 bq − ab.

We require that g(a; b) ≥ 0 for all a. Differentiating wrt a for fixed b yields g(1)(a; b) = ap−1 − b,
so that g(a; b) is minimized (the second derivative is strictly positive at all a) when ap−1 = b, and
at this value of a, the function takes the value

p−1 ap + q−1 (ap−1)q − a(ap−1) = p−1 ap + q−1 ap − ap = 0

as, 1/p + 1/q = 1 =⇒ (p − 1)q = p. As the second derivative is strictly positive at all a, the
minimum is attained at the unique value of a where ap−1 = b, where, raising both sides to power
q yields ap = bq.

Proof (of Hölder’s Inequality, given in the continuous case) For the first inequality,

EX,Y [|XY |] =
∫∫

|xy|fX,Y (x, y) dx dy ≥
∫∫

xyfX,Y (x, y) dx dy = EX,Y [XY ]

and

EX,Y [XY ] =

∫∫
xyfX,Y (x, y) dx dy ≥

∫∫
−|xy|fX,Y (x, y) dx dy = −EX,Y [|XY |]

so
−EX,Y [|XY |] ≤ EX,Y [XY ] ≤ EX,Y [|XY |] ∴ |EX,Y [XY ]| ≤ EX,Y [|XY |].
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For the second inequality, using

a =
|X|

{EX [|X|p]}1/p
b =

|Y |
{EY [|Y |q]}1/q

.

in the lemma, we have that

p−1 |X|p

EX [|X|p]
+ q−1 |Y |q

EY [|Y |q]
≥ |XY |

{EX [|X|p]}1/p {EY [|Y |q]}1/q

and taking expectations yields, on the left hand side,

p−1 EX [|X|p]
EX [|X|p]

+ q−1 EY [|Y |q]
EY [|Y |q]

= p−1 + q−1 = 1

and on the right hand side
EX,Y [|XY |]

{EX [|X|p]}1/p {EY [|Y |q]}1/q

and the result follows.

Note: here we have equality if and only if

PX,Y [|X|p = c|Y |q] = 1

for some non zero constant c.

Corollaries:

(a) Setting p = q = 2 in the Hölder Inequality, we have

|EX,Y [XY ]| ≤ EX,Y [|XY |] ≤
{
EX [|X|2]

}1/2 {
EY [|Y |2]

}1/2
as in the Cauchy-Schwarz inequality.

(b) Let µX and µY denote the expectations of X and Y respectively. Then

|EX,Y [(X − µX)(Y − µY )]| ≤
{
EX [(X − µX)2]

}1/2 {
EY [(Y − µY )

2]
}1/2

so that
{EX,Y [(X − µX)(Y − µY )]}2 ≤ EX [(X − µX)2]EY [(Y − µY )

2]

and defining the left-hand side as the square of the covariance between X and Y , CovX,Y [X,Y ],
we have

{CovX,Y [X,Y ]}2 ≤ VarX [X] VarY [Y ].

(c) Lyapunov’s Inequality: Suppose PY [Y = 1] = 1. Then, for 1 < p < ∞

EX [|X|] ≤ {EX [|X|p]}1/p .

Let 1 < r < p. Then
EX [|X|r] ≤ {EX [|X|pr]}1/p

and letting s = pr > r yields

EX [|X|r] ≤ {EX [|X|s]}r/s

so that
{EX [|X|r]}1/r ≤ {EX [|X|s]}1/s

for 1 < r < s < ∞.
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(d) Minkowski’s Inequality: Suppose that 1 ≤ p < ∞. Then

{EX,Y [|X + Y |p]}1/p ≤ {EX [|X|p]}1/p + {EY [|Y |p]}1/p

for random variables X and Y .

Proof Write

EX,Y [|X + Y |p] = EX,Y [|X + Y ||X + Y |p−1]

≤ EX,Y [|X||X + Y |p−1] + EX,Y [|Y ||X + Y |p−1]

by the triangle inequality |x+ y| ≤ |x|+ |y|. Using Hölder’s Inequality on the terms on the
right hand side, for q selected to satisfy 1/p+ 1/q = 1,

EX,Y [|X + Y |p] ≤{EX [|X|p]}1/p
{
EX,Y [|X + Y |q(p−1)]

}1/q

+ {EY [|Y |p]}1/p
{
EX,Y [|X + Y |q(p−1)]

}1/q

and dividing through by
{
EX,Y [|X + Y |q(p−1)]

}1/q
yields

EX,Y [|X + Y |p]{
EX,Y [|X + Y |q(p−1)]

}1/q ≤ {EX [|X|p]}1/p + {EY [|Y |p]}1/p

and the result follows as q(p− 1) = p, and 1− 1/q = 1/p.
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