Math 556: Mathematical Statistics I

MULTIVARIATE PROBABILITY DISTRIBUTIONS: EXAMPLES

Discrete bivariate distributions: We consider two variables X_{1} and X_{2} that are both discrete. We can suppose that both variables take values on the integers, \mathbb{Z}. A discrete bivariate probability mass function is a function of two arguments

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

that distributes probability across the possible values of the vector $\left(X_{1}, X_{2}\right)$ so that

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P_{X_{1}, X_{2}}\left(\left(X_{1}=x_{1}\right) \cap\left(X_{2}=x_{2}\right)\right) \equiv P_{X_{1}, X_{2}}\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

for $-\infty<x_{1}<\infty$ and $-\infty<x_{2}<\infty$. The function $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ is the joint probability mass function: it has two basic properties

- "specifies probabilities"

$$
0 \leq f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \leq 1 \quad \text { for all } x_{1}, x_{2}
$$

- "sums to one"

$$
\sum_{x_{1}=-\infty}^{\infty} \sum_{x_{2}=-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1
$$

although $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ may be zero for some arguments.
We can think of $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ as specifying the values in a probability table.

		X_{2}			
		1	2	3	
	1	$f_{X_{1}, X_{2}}(1,1)$	$f_{X_{1}, X_{2}}(1,2)$	$f_{X_{1}, X_{2}}(1,3)$	
	2	$f_{X_{1}, X_{2}}(2,1)$	$f_{X_{1}, X_{2}}(2,2)$	$f_{X_{1}, X_{2}}(2,3)$	
X_{1}	3	$f_{X_{1}, X_{2}}(3,1)$	$f_{X_{1}, X_{2}}(3,2)$	$f_{X_{1}, X_{2}}(3,3)$	
	4	$f_{X_{1}, X_{2}}(4,1)$	$f_{X_{1}, X_{2}}(4,2)$	$f_{X_{1}, X_{2}}(4,3)$	
	5	$f_{X_{1}, X_{2}}(5,1)$	$f_{X_{1}, X_{2}}(5,2)$	$f_{X_{1}, X_{2}}(5,3)$	

Example: For $1 \leq x_{1} \leq 5,1 \leq x_{2} \leq 3$

$f_{X_{1}, X_{2}}$, x_{2})	$\underline{(x}$	$\frac{\left.+x_{2}\right)}{75}$
		X_{2}	
	1	2	3
1	2/75	3/75	4/75
2	3/75	4/75	5/75
$X_{1} \quad 3$	4/75	5/75	6/75
4	5/75	6/75	7/75
5	6/75	7/75	8/75

In the above example,

$$
\begin{aligned}
\sum_{x_{1}=1}^{5} \sum_{x_{2}=1}^{3} \frac{\left(x_{1}+x_{2}\right)}{75} & =\frac{1}{75} \sum_{x_{1}=1}^{5} \sum_{x_{2}=1}^{3}\left(x_{1}+x_{2}\right)=\frac{1}{75}\left[3 \sum_{x_{1}=1}^{5} x_{1}+5 \sum_{x_{2}=1}^{3} x_{2}\right] \\
& =\frac{1}{75}\left[3 \frac{5 \times 6}{2}+5 \frac{3 \times 4}{2}\right] \\
& =\frac{1}{75}[45+30]=1 .
\end{aligned}
$$

We define the joint cumulative distribution function $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ by

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P_{X_{1}, X_{2}}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)=\sum_{t_{1}=-\infty}^{x_{1}} \sum_{t_{2}=-\infty}^{x_{2}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)
$$

that is, by summing probabilities in the joint pmf over a range of values up to and including (x_{1}, x_{2})

$$
F_{X_{1}, X_{2}}(3,6)=P_{X_{1}, X_{2}}\left(X_{1} \leq 3, X_{2} \leq 6\right)=\sum_{t_{1}=0}^{3} \sum_{t_{2}=0}^{6} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)
$$

$$
F_{X_{1}, X_{2}}(8,2)=P_{X_{1}, X_{2}}\left(X_{1} \leq 8, X_{2} \leq 2\right)=\sum_{t_{1}=0}^{8} \sum_{t_{2}=0}^{2} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)
$$

Example 1 A bag contains ten balls:

- five red;
- three yellow;
- two white;

Four balls are selected, with all such selections being equally likely. Let

- X_{1} denote the number of red balls selected;
- X_{2} denote the number of yellow balls selected.

Then using combinatorial arguments, we see that the joint pmf of X_{1} and X_{2} is given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{\binom{5}{x_{1}}\binom{3}{x_{2}}\binom{2}{4-x_{1}-x_{2}}}{\binom{10}{4}}
$$

for $\left(x_{1}, x_{2}\right)$ such that the combinatorial terms are defined, and zero when the terms are not. We need (x_{1}, x_{2}) simultaneously to satisfy

$$
0 \leq x_{1} \leq 5 \quad 0 \leq x_{2} \leq 3 \quad 0 \leq 4-x_{1}-x_{2} \leq 2
$$

in order to have a non-zero probability. Total number of selections: $\binom{10}{4}=210$.

Red $\left(x_{1}\right)$	Yellow $\left(x_{2}\right)$	White	Count
0	2	2	3
0	3	1	2
1	1	2	15
1	2	1	30
1	3	0	5
2	0	2	10
2	1	1	60
2	2	0	30
3	0	1	20
3	1	0	30
4	0	0	5

	$f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$				
		X_{2}			
		0	1	2	3
	0	0.0000	0.0000	0.0143	0.0095
	1	0.0000	0.0714	0.1429	0.0238
	2	0.0476	0.2857	0.1429	0.0000
X_{1}	3	0.0952	0.1429	0.0000	0.0000
	4	0.0238	0.0000	0.0000	0.0000
	5	0.0000	0.0000	0.0000	0.0000

The marginal mass function: Suppose that the joint pmf for X_{1} and X_{2} is denoted $f_{X_{1}, X_{2}}(.,$.$) . Then$ the marginal pmf for $X_{1}, f_{X_{1}}($.$) is given by$

$$
f_{X_{1}}\left(x_{1}\right)=P_{X_{1}}\left(X_{1}=x_{1}\right)=\sum_{x_{2}=-\infty}^{\infty} P_{X_{1}, X_{2}}\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

that is

$$
f_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}=-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

This result uses a partitioning argument:

$$
\left(X_{1}=x_{1}\right)=\bigcup_{x_{2}=-\infty}^{\infty}\left(X_{1}=x_{1}\right) \cap\left(X_{2}=x_{2}\right)
$$

For example

$$
P_{X_{1}}\left(X_{1}=2\right)=P_{X_{1}, X_{2}}\left(X_{1}=2, X_{2}=1\right)+P_{X_{1}, X_{2}}\left(X_{1}=2, X_{2}=2\right)+P_{X_{1}, X_{2}}\left(X_{1}=2, X_{2}=3\right) .
$$

If $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ specifies the values in a probability table, we compute the marginal pmf

- for X_{1} by summing across the rows of the table;
- for X_{2} by summing down the columns of the table.

		X_{2}			$f_{X_{1}}($.
		1		3	
X_{1}	1	$f_{X_{1}, X_{2}}(1,1)$	$f_{X_{1}, X_{2}}(1,2)$	$f_{X_{1}, X_{2}}(1,3)$	$f_{X_{1}(1)}$
	2	$f_{X_{1}, X_{2}}(2,1)$	$f_{X_{1}, X_{2}}(2,2)$	$f_{X_{1}, X_{2}}(2,3)$	$f_{X_{1}}(2)$
	3	$f_{X_{1}, X_{2}}(3,1)$	$f_{X_{1}, X_{2}}(3,2)$	$f_{X_{1}, X_{2}}(3,3)$	$f_{X_{1}}(3)$
	4	$f_{X_{1}, X_{2}}(4,1)$	$f_{X_{1}, X_{2}}(4,2)$	$f_{X_{1}, X_{2}}(4,3)$	$f_{X_{1}}(4)$
	5	${ }_{f_{X_{1}, X_{2}}(5,1)}$	$f_{X_{1}, X_{2}}(5,2)$	$f_{X_{1}, X_{2}}(5,3)$	$f_{X_{1}}(5)$
	$f_{X_{2}(.)}$	$f_{X_{2}}(1)$	$f_{X_{2}}(2)$	$f_{X_{2}}(3)$	1

Example 2 [Previous example]
Four balls selected from 10.

- X_{1} denote the number of red balls selected;
- X_{2} denote the number of yellow balls selected.

The joint pmf of X_{1} and X_{2} is given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{\binom{5}{x_{1}}\binom{3}{x_{2}}\binom{2}{4-x_{1}-x_{2}}}{\binom{10}{4}}
$$

for (x_{1}, x_{2}) such that the combinatorial terms are defined, and zero when the terms are not. We can compute the marginal pmf for X_{1} by summing probabilities in the joint probability table.

$$
\begin{aligned}
& f_{X_{1}}(0)=\frac{\binom{5}{0}\binom{3}{2}\binom{2}{2}+\binom{5}{0}\binom{3}{3}\binom{2}{1}}{\binom{10}{4}}=\frac{3+2}{210}=\frac{5}{210} \\
& f_{X_{1}}(1)=\frac{\binom{5}{1}\binom{3}{1}\binom{2}{2}+\binom{5}{1}\binom{3}{2}\binom{2}{1}+\binom{5}{1}\binom{3}{3}\binom{2}{0}}{\binom{10}{4}}=\frac{15+30+5}{210}=\frac{50}{210} \\
& f_{X_{1}}(2)=\frac{\binom{5}{2}\binom{3}{0}\binom{2}{2}+\binom{5}{2}\binom{3}{1}\binom{2}{1}+\binom{5}{2}\binom{3}{0}\binom{2}{2}}{\binom{10}{4}}=\frac{10+60+30}{210}=\frac{100}{210} \\
& f_{X_{1}}(3)=\frac{\binom{5}{3}\binom{3}{0}\binom{2}{1}+\binom{5}{3}\binom{3}{1}\binom{2}{0}}{\binom{10}{4}}=\frac{20+30}{210}=\frac{50}{210} \\
& f_{X_{1}}(4)=\frac{\binom{5}{4}\binom{3}{0}\binom{2}{0}}{\binom{10}{4}}=\frac{5}{210}
\end{aligned}
$$

Note: In this example we can compute $f_{X_{1}}($.$) directly using the hypergeometric formula$

$$
f_{X_{1}}\left(x_{1}\right)=\frac{\binom{5}{x_{1}}\binom{5}{4-x_{1}}}{\binom{10}{4}}
$$

for $0 \leq x_{1} \leq 5$ and $0 \leq 4-x_{1} \leq 5$.

x_{1}	Numerator
0	$\binom{5}{0}\binom{5}{4}=1 \times 5=5$
1	$\binom{5}{1}\binom{5}{2}=5 \times 10=50$
2	$\binom{5}{2}\binom{5}{3}=10 \times 10=100$
3	$\binom{5}{3}\binom{5}{1}=10 \times 5=50$
4	$\binom{5}{4}\binom{5}{0}=5 \times 1=5$

The marginal pmfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$ have all the properties of single variable pmfs; specifically

$$
\sum_{x_{1}=-\infty}^{\infty} f_{X_{1}}\left(x_{1}\right)=\sum_{x_{1}=-\infty}^{\infty} \sum_{x_{2}=-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1 .
$$

The conditional mass function: Once we have the joint pmf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P_{X_{1}, X_{2}}\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

and the marginal pmf

$$
f_{X_{1}}\left(x_{1}\right)=P_{X_{1}}\left(X_{1}=x_{1}\right)
$$

we can consider conditional pmfs. We have that if $P_{X_{1}}\left(X_{1}=x_{1}\right)>0$, then the conditional probability that $X_{2}=x_{2}$, given that $X_{1}=x_{1}$, is

$$
P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)=\frac{P_{X_{1}, X_{2}}\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{P_{X_{1}}\left(X_{1}=x_{1}\right)}
$$

For a fixed value of x_{1}, we can consider how this conditional probability varies as argument x_{2} varies. The conditional probability mass function for X_{2}, given that $X_{1}=x_{1}$, is denoted

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

and defined by

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)
$$

whenever $P_{X_{1}}\left(X_{1}=x_{1}\right)>0$.
The conditional pmfs are obtained by taking 'slices' through the joint pmf, and then standardizing the slice so that the probabilities sum to one. Recall that

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{P\left(X_{1}=x_{1}\right)}=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{\sum_{t_{2}=-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, t_{2}\right)} .
$$

Given $X_{1}=2$, we define the conditional pmf $f_{X_{2} \mid X_{1}}\left(x_{2} \mid 2\right)$ by examining the second row of the table.

		X_{2}			$f_{X_{1}}($.
		1		3	
X_{1}	1	$f_{X_{1}, X_{2}}(1,1)$	$f_{X_{1}, X_{2}}(1,2)$	$f_{X_{1}, X_{2}}(1,3)$	$f_{X_{1}}(1)$
	2	$f_{X_{1}, X_{2}}(2,1)$	$f_{X_{1}, X_{2}}(2,2)$	$f_{X_{1}, X_{2}}(2,3)$	$f_{X_{1}}(2)$
	3	$f_{X_{1}, X_{2}}(3,1)$	$f_{X_{1}, X_{2}}(3,2)$	$f_{X_{1}, X_{2}}(3,3)$	$f_{X_{1}}(3)$
	4	$f_{X_{1}, X_{2}}(4,1)$	$f_{X_{1}, X_{2}}(4,2)$	$f_{X_{1}, X_{2}}(4,3)$	$f_{X_{1}}(4)$
	5	$f_{X_{1}, X_{2}}(5,1)$	$f_{X_{1}, X_{2}}(5,2)$	$f_{X_{1}, X_{2}}(5,3)$	$f_{X_{1}}(5)$
	$f_{X_{2}(.)}$	$f_{X_{2}}(1)$	$f_{X_{2}}(2)$	$f_{X_{2}}(3)$	1

Given $X_{2}=3$, we define the conditional pmf $f_{X_{1} \mid X_{2}}\left(x_{1} \mid 3\right)$ by examining the third column of the table.

		X_{2}			$f_{X_{1}}($.
		1	2	3	
X_{1}	1	$f_{X_{1}, X_{2}}(1,1)$	$f_{X_{1}, X_{2}}(1,2)$	$f_{X_{1}, X_{2}}(1,3)$	$f_{X_{1}}(1)$
	2	$f_{X_{1}, X_{2}}(2,1)$	$f_{X_{1}, X_{2}}(2,2)$	$f_{X_{1}, X_{2}}(2,3)$	$f_{X_{1}}(2)$
	3	$f_{X_{1}, X_{2}}(3,1)$	$f_{X_{1}, X_{2}}(3,2)$	$f_{X_{1}, X_{2}}(3,3)$	$f_{X_{1}}(3)$
	4	$f_{X_{1}, X_{2}}(4,1)$	$f_{X_{1}, X_{2}}(4,2)$	$f_{X_{1}, X_{2}}(4,3)$	$f_{X_{1}}(4)$
	5	$f_{X_{1}, X_{2}}(5,1)$	$f_{X_{1}, X_{2}}(5,2)$	$f_{X_{1}, X_{2}}(5,3)$	$f_{X_{1}}(5)$
	$f_{X_{2}(.)}$	$f_{X_{2}}(1)$	$f_{X_{2}}(2)$	$f_{X_{2}}(3)$	1

Note: We have the fundamental relationship

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

whenever $f_{X_{1}}\left(x_{1}\right)>0$.

Continuous case: joint density function: If X_{1} and X_{2} are two continuous random variables, then we can still consider statements of the form

$$
P_{X_{1}, X_{2}}\left(\left(X_{1} \leq x_{1}\right) \cap\left(X_{2} \leq x_{2}\right)\right)
$$

and hence define the joint cumulative distribution function cdf

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left(\left(X_{1} \leq x_{1}\right) \cap\left(X_{2} \leq x_{2}\right)\right)
$$

for any pair of real numbers $\left(x_{1}, x_{2}\right)$.
The joint cdf has the following properties:

- "starts at zero"

$$
\lim _{x_{1} \longrightarrow-\infty x_{2}} \lim _{\longrightarrow-\infty} F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=0
$$

- "ends at one"

$$
\lim _{x_{1} \longrightarrow \infty} \lim _{x_{2} \longrightarrow \infty} F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1
$$

- "non-decreasing in x_{1} and x_{2} in between"

$$
\begin{aligned}
& F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \leq F_{X_{1}, X_{2}}\left(x_{1}+h, x_{2}\right) \\
& F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \leq F_{X_{1}, X_{2}}\left(x_{1}, x_{2}+h\right)
\end{aligned}
$$

for all x_{1}, x_{2}, and any $h>0$.
Furthermore, we have that

$$
\lim _{x_{1} \longrightarrow \infty} F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P_{X_{1}, X_{2}}\left(X_{1}<\infty, X_{2} \leq x_{2}\right)=P_{X_{1}}\left(X_{2} \leq x_{2}\right)=F_{X_{2}}\left(x_{2}\right)
$$

and similarly

$$
\lim _{x_{2} \longrightarrow \infty} F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) .
$$

Regions of integration: to compute the joint cdf, we accumulate probability over the shaded region, the rectangle

$$
\left(-\infty, x_{1}\right] \times\left(-\infty, x_{2}\right],
$$

to compute $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$. However, as in the single variable case, we must have

$$
P_{X_{1}, X_{2}}\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=0
$$

for all x_{1} and x_{2}.

$$
F_{X_{1}, X_{2}}(3,5)=P_{X_{1}, X_{2}}\left(X_{1} \leq 3, X_{2} \leq 5\right)
$$

$$
F_{X_{1}, X_{2}}(8,2)=P_{X_{1}, X_{2}}\left(X_{1} \leq 8, X_{2} \leq 2\right)
$$

$$
F_{X_{1}, X_{2}}(-1,5)=P_{X_{1}, X_{2}}\left(X_{1} \leq-1, X_{2} \leq 5\right)
$$

$$
F_{X_{1}, X_{2}}(-1,5)=P_{X_{1}, X_{2}}\left(X_{1} \leq-1, X_{2} \leq 5\right)
$$

Joint pdf: As in the single variable case, we introduce the joint probability density function (joint pdf)

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

to describe how probability is spread around the possible values, where

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right) d t_{2} d t_{1}
$$

that is, to compute $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ we integrate $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ over the rectangle

$$
\left(-\infty, x_{1}\right] \times\left(-\infty, x_{2}\right]
$$

We compute the double integral as follows: writing

$$
\int_{-\infty}^{x_{1}}\left\{\int_{-\infty}^{x_{2}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right) d t_{2}\right\} d t_{1}
$$

- fix t_{1}, and perform the first (inner) integration

$$
\int_{-\infty}^{x_{2}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right) d t_{2}
$$

in the 'strip' at t_{1} to obtain a function $g\left(t_{1}, x_{2}\right)$, say;

- perform the second (outer) integration

$$
\int_{-\infty}^{x_{1}} g\left(t_{1}, x_{2}\right) d t_{1} .
$$

to obtain the joint cdf.

$$
F_{X_{1}, X_{2}}(5,7)=P_{X_{1}, X_{2}}\left(X_{1} \leq 5, X_{2} \leq 7\right)
$$

The joint pdf describes how the probability is spread 'point-by-point' across the real plane. By the probability axioms, we must have that

- the joint pdf is non-negative

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \geq 0 \quad-\infty<x_{1}<\infty,-\infty<x_{2}<\infty
$$

(as the joint cdf is non-decreasing in both x_{1} and x_{2});

- the joint pdf integrates to 1

$$
\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}\right\} d x_{1}=1
$$

(as the probability must accumulate to 1 over the real plane).

Example 3 Suppose X_{1} and X_{2} are continuous with joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c\left(x_{1}+x_{2}\right) \quad 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1
$$

with $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=0$ otherwise. Then for $0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1$,

$$
\begin{aligned}
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}}\left\{\int_{-\infty}^{x_{2}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right) d t_{2}\right\} d t_{1} & =\int_{0}^{x_{1}}\left\{\int_{0}^{x_{2}} c\left(t_{1}+t_{2}\right) d t_{2}\right\} d t_{1} \\
& =\int_{0}^{x_{1}}\left[c\left(t_{1} t_{2}+\frac{1}{2} t_{2}^{2}\right)\right]_{0}^{x_{2}} d t_{1} \\
& =\int_{0}^{x_{1}} c\left(t_{1} x_{2}+\frac{1}{2} x_{2}^{2}\right) d t_{1} \\
& =\left[c\left(\frac{1}{2} t_{1}^{2} x_{2}+\frac{1}{2} x_{2}^{2} t_{1}\right)\right]_{0}^{x_{1}} \\
& =\frac{c}{2}\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)
\end{aligned}
$$

We require that $F_{X_{1}, X_{2}}(1,1)=1$, so we must have $c=1$. That is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\left(x_{1}+x_{2}\right) & 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(no probability outside of the unit square).

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
0 & x_{1}<0 \text { or } x_{2}<0 \\
\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right) / 2 & 0 \leq x_{1}, x_{2} \leq 1 \\
\left(x_{1}^{2}+x_{1}\right) / 2 & 0 \leq x_{1} \leq 1, x_{2}>1 \\
\left(x_{2}+x_{2}^{2}\right) / 2 & 0 \leq x_{2} \leq 1, x_{1}>1 \\
1 & x_{1}>1 \text { and } x_{2}>1
\end{array}\right.
$$

Note: regions for $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$

Note: To compute $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ we always integrate the joint pdf below and to the left of $\left(x_{1}, x_{2}\right)$.

Figure 1: $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$: image and contour plot

Figure 2: $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$: image and contour plot

Figure 3: $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$: contour plot

Figure 4: $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$: contour plot

We compute $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ from $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ using partial differentiation:

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left\{F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)\right\}
$$

- Step 1: differentiate $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ with respect to x_{2} while holding x_{1} constant;
- Step 2: take the result of Step 1, and differentiate it with respect to x_{1}.

We can regard the calculation as

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{1}}\left\{\frac{\partial F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{\partial x_{2}}\right\}
$$

Example 4 [Previous example] For $0 \leq x_{1}, x_{2} \leq 1$,

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)
$$

- Step 1:

$$
\frac{\partial F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{\partial x_{2}}=\frac{1}{2}\left(x_{1}^{2}+2 x_{1} x_{2}\right)
$$

- Step 2:

$$
\frac{\partial\left\{\frac{1}{2}\left(x_{1}^{2}+2 x_{1} x_{2}\right)\right\}}{\partial x_{2}}=\frac{1}{2}\left(2 x_{1}+2 x_{2}\right)=\left(x_{1}+x_{2}\right)
$$

Note: In the partial differentiation, we could choose to differentiate with respect to x_{1} in Step 1, and then differentiate the result with respect to x_{2} : we will get the same answer

$$
\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left\{F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)\right\}=\frac{\partial^{2}}{\partial x_{2} \partial x_{1}}\left\{F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)\right\}
$$

This is a general property of partial derivatives that holds provided the result of each side is continuous.

Constant pdfs: If the joint pdf is constant over a finite region $\mathcal{Y} \in \mathbb{R}^{2}$

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c \quad\left(x_{1}, x_{2}\right) \in \mathcal{Y}
$$

with $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ zero otherwise, then to compute probabilities associated with this pdf, for example

$$
P_{X_{1}, X_{2}}\left(\left(X_{1}, X_{2}\right) \in A\right)=\iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

we must compute the area of A and divide it by the area of \mathcal{X}.

The marginal density function: Once the joint pdf $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ is specified, we define the marginal probability density functions (marginal pdfs) analogously to the discrete case.

We have for X_{1} the marginal pdf $f_{X_{1}}\left(x_{1}\right)$ for each fixed x_{1} by

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}
$$

and for X_{2} the marginal pdf $f_{X_{2}}\left(x_{2}\right)$ for each fixed x_{2} by

$$
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1}
$$

Example 5 [Distribution on the unit square]
For

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\left(x_{1}+x_{2}\right) & 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

We have for $0 \leq x_{1} \leq 1$

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} \\
& =\int_{0}^{1}\left(x_{1}+x_{2}\right) d x_{2} \\
& =\left[x_{1} x_{2}+\frac{x_{2}^{2}}{2}\right]_{0}^{1} \\
& =x_{1}+\frac{1}{2} .
\end{aligned}
$$

with $f_{X_{1}}\left(x_{1}\right)=0$ otherwise. Also for $0 \leq x_{1} \leq 1$

$$
\begin{aligned}
F_{X_{1}}\left(x_{1}\right) & =\int_{-\infty}^{x_{1}} f_{X_{1}}\left(t_{1}\right) d t_{1} \\
& =\int_{0}^{x_{1}}\left(t_{1}+\frac{1}{2}\right) d t_{2} \\
& =\left[\frac{t_{1}^{2}}{2}+\frac{t_{1}}{2}\right]_{0}^{x_{1}} \\
& =\frac{x_{1}^{2}}{2}+\frac{x_{1}}{2} .
\end{aligned}
$$

with $F_{X_{1}}\left(x_{1}\right)=0$ for $x_{1}<0$ and $F_{X_{1}}\left(x_{1}\right)=1$ for $x_{1}>1$.

$$
f_{X_{1}}\left(x_{1}\right)=x_{1}+1 / 2 \text { for } 0 \leq x_{1} \leq 1
$$

$$
F_{X_{1}}\left(x_{1}\right)=\left(x_{1}^{2}+x_{1}\right) / 2 \text { for } 0 \leq x_{1} \leq 1
$$

We can perform a similar calculation and obtain

$$
f_{X_{2}}\left(x_{2}\right)=x_{2}+\frac{1}{2} \quad 0 \leq x_{2} \leq 1
$$

with $f_{X_{2}}\left(x_{2}\right)=0$ otherwise, and

$$
F_{X_{2}}\left(x_{2}\right)=\frac{\left(x_{2}^{2}+x_{2}\right)}{2} \quad 0 \leq x_{2} \leq 1
$$

with $F_{X_{2}}\left(x_{2}\right)=0$ for $x_{2}<0$ and $F_{X_{2}}\left(x_{2}\right)=1$ for $x_{2}>1$.

The conditional density function: Once we have the joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

and the marginal pdf

$$
f_{X_{1}}\left(x_{1}\right)
$$

we can consider conditional pdfs.
The conditional probability density function for X_{2}, given that $X_{1}=x_{1}$, is denoted

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

and defined by

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}
$$

whenever $f_{X_{1}}\left(x_{1}\right)>0$. The function $f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$ is a pdf in x_{2} for every fixed x_{1}. That is, for every fixed x_{1} where $f_{X_{1}}\left(x_{1}\right)>0$,

- the conditional pdf is non-negative

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \geq 0 \quad-\infty<x_{2}<\infty ;
$$

- the conditional pdf is integrates to 1 over x_{2}

$$
\int_{-\infty}^{\infty} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2}=1
$$

We can define $f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)$ in an identical fashion. Conditional pdfs are obtained by taking a 'slice' through the joint pdf at $X_{1}=x_{1}$, and then standardizing the slice so that the density integrates to one. As in the discrete case, we have the chain rule factorization

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

whenever $f_{X_{1}}\left(x_{1}\right)>0$.
As ever, we can exchange the roles of X_{1} and X_{2} to obtain that

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{2}}\left(x_{2}\right) f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) .
$$

whenever $f_{X_{1}}\left(x_{1}\right)>0$.
Example 6 [Distribution on the unit square]
For

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\left(x_{1}+x_{2}\right) & 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

we can consider conditioning on values of x_{1} or x_{2} in the interval $[0,1]$. As

$$
f_{X_{1}}\left(x_{1}\right)=x_{1}+\frac{1}{2} \quad 0 \leq x_{1} \leq 1
$$

we have for each fixed x_{1} in this range

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{\left(x_{1}+x_{2}\right)}{x_{1}+1 / 2}
$$

for $0 \leq x_{2} \leq 1$, with the function zero for other values of x_{2}.

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{\left(x_{1}+x_{2}\right)}{x_{1}+1 / 2} \text { for } 0 \leq x_{2} \leq 1, \text { with } x_{1}=0.2
$$

$$
\begin{aligned}
& f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{\left(x_{1}+x_{2}\right)}{x_{1}+1 / 2} \text { for } 0 \leq x_{2} \leq 1 \text {, with } x_{1}=0.2 \\
& f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{\left(x_{1}+x_{2}\right)}{x_{1}+1 / 2} \text { for } 0 \leq x_{2} \leq 1 \text {, with } x_{1}=0.6
\end{aligned}
$$

$f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{\left(x_{1}+x_{2}\right)}{x_{1}+1 / 2}$ for $0 \leq x_{2} \leq 1$, with $x_{1}=0.95$

General multivariate distributions: All of the above ideas extend naturally to more than two variables. If $\left(X_{1}, \ldots, X_{d}\right)$ form an n-dimensional random vector, we can consider the joint $p d f$

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)
$$

and joint cdf

$$
F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) .
$$

We can consider marginalization by integrating out $n-k<n$ of the dimensions to leave a k-dimensional probability distribution: for example if $d=4$ and $k=2$, we have

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) d x_{3} d x_{4}
$$

or

$$
f_{X_{2}, X_{4}}\left(x_{2}, x_{4}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) d x_{1} d x_{3}
$$

and so on. This construction works with any d and any k. We can also define conditional pdfs for example

$$
f_{X_{1}, X_{3} \mid X_{2}, X_{4}}\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)=\frac{f_{X_{1}, X_{2}, X_{3}, X_{4}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{f_{X_{2}, X_{4}}\left(x_{2}, x_{4}\right)}
$$

provided the denominator $f_{X_{2}, X_{4}}\left(x_{2}, x_{4}\right)>0$.

Independence

Continuous random variables $\left(X_{1}, \ldots, X_{d}\right)$ are independent if

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} f_{X_{i}}\left(x_{i}\right)
$$

for all vectors $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. Equivalently they are independent if

$$
F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} F_{X_{i}}\left(x_{i}\right)
$$

for all vectors $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$. Random variables that are not independent are termed dependent.
In the bivariate case, X_{1} and X_{2} are independent if

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=f_{X_{2}}\left(x_{2}\right)
$$

for all (x_{1}, x_{2}) where the conditional pdf is defined, or equivalently if

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)
$$

for all $\left(x_{1}, x_{2}\right)$.

Note: A straightforward way to exclude the possibility of two variables being independent is to assess whether the set of values, \mathbb{K}_{12} (called the support of the joint pdf), for which

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)>0
$$

is identical to the Cartesian product of the two sets, \mathbb{X}_{1} and \mathbb{X}_{2} for which the marginal densities satisfy $f_{X_{1}}\left(x_{1}\right)>0$ and $f_{X_{2}}\left(x_{2}\right)>0$. That is, if

$$
x_{12} \neq x_{1} \times x_{2}
$$

then X_{1} and X_{2} are not independent.

We can find points where

- $f_{X_{1}}\left(x_{1}\right)>0$ and $f_{X_{2}}\left(x_{2}\right)>0$, but
- $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=0$
(for example, the point $(5,5)$), so we do not meet the requirement for independence that

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
$$

for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.

