Math 556: Mathematical Statistics I

AsSESSING INDEPENDENCE

Random variables X_{1}, \ldots, X_{d} are independent if, for all $\left(x_{1}, \ldots, x_{d}\right)$

$$
F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} F_{X_{j}}\left(x_{j}\right)
$$

or equivalently

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} f_{X_{j}}\left(x_{j}\right) .
$$

This definition is equivalent to saying that

$$
f_{X_{1} \mid X_{2}, \ldots, X_{d}}\left(x_{1} \mid x_{2} \ldots, x_{d}\right)=f_{X_{1}}\left(x_{1}\right)
$$

for all possible selections of x_{1}, \ldots, x_{d}; note that the labelling of the variables is arbitrary, so this definition applies equivalently for any permutation of the labels.

The requirement that the factorizations hold for all $\left(x_{1}, \ldots, x_{d}\right)$ is important, and means that we typically need to consider the ranges of the random variables concerned. The following example illustrates this.
Example: Suppose, for $d=2$, that X_{1} and X_{2} have joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\pi} \quad\left(x_{1}, x_{2}\right) \in D
$$

where D is the unit disk, that is, the interior of the unit circle centered at $(0,0)$. The joint pdf is constant on D, and the area of the disk is π, so the joint pdf integrates to 1 . Marginally, we have that

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{-\sqrt{1-x_{1}^{2}}}^{\sqrt{1-x_{1}^{2}}} \frac{1}{\pi} d x_{2}=\frac{2}{\pi} \sqrt{1-x_{1}^{2}} \quad 0<x_{1}<1
$$

and zero otherwise. Similarly

$$
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1}=\int_{-\sqrt{1-x_{2}^{2}}}^{\sqrt{1-x_{2}^{2}}} \frac{1}{\pi} d x_{1}=\frac{2}{\pi} \sqrt{1-x_{2}^{2}} \quad 0<x_{2}<1
$$

and zero otherwise. Thus, clearly

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \neq f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
$$

and X_{1} and X_{2} are not independent.
However, it is also clear from inspection of the joint pdf that there are regions of \mathbb{R}^{2} where the joint pdf is zero but where each marginal is non-zero. Considering X_{1} and X_{2} separately, it is clear that each variable can take values with positive probability anywhere on the interval $(-1,1)$. However, under this model

$$
P_{X}\left[X_{1}^{2}+X_{2}^{2}>1\right]=0
$$

Example: Suppose, for $d=2$, that X_{1} and X_{2} have joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c x_{1} x_{2} \quad\left(x_{1}, x_{2}\right) \in \mathbb{X}
$$

and zero otherwise, where \mathbb{K} is the set

$$
\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0<x_{1}<x_{2}<1\right\} .
$$

We have that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=1 \quad \Longrightarrow \quad \int_{0}^{1} \int_{x_{1}}^{1} c x_{1} x_{2} d x_{2} d x_{1}=1
$$

as the joint pdf is zero outside of \mathcal{K}. Thus

$$
c^{-1}=\int_{0}^{1} \int_{x_{1}}^{1} x_{1} x_{2} d x_{2} d x_{1}=\frac{1}{2} \int_{0}^{1} x_{1}\left(1-x_{1}^{2}\right) d x_{1}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)=\frac{1}{8}
$$

so $c=8$. It is tempting to observe that as $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ factorizes into a function of x_{1} and a function of x_{2}, the two random variables are independent. However, from direct calculation, for $0<x_{1}<1$

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{x_{1}}^{1} x_{1} x_{2} d x_{2}
$$

as the joint pdf is non-zero only when $x_{1}<x_{2}$. Hence for $0<x_{1}<1$

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =8 x_{1} \int_{x_{1}}^{1} x_{2} d x_{2} \\
& =8 x_{1}\left[\frac{1}{2} x_{2}^{2}\right]_{x_{1}}^{1} \\
& =4 x_{1}\left(1-x_{1}^{2}\right)
\end{aligned}
$$

with the pdf zero otherwise. Similarly for $0<x_{2}<1$

$$
\begin{aligned}
f_{X_{2}}\left(x_{2}\right) & =8 x_{2} \int_{0}^{x_{2}} x_{1} d x_{1} \\
& =8 x_{2}\left[\frac{1}{2} x_{1}^{2}\right]_{0}^{x_{2}} \\
& =4 x_{2}^{3}
\end{aligned}
$$

with the pdf zero otherwise. Clearly X_{1} and X_{2} are not independent. More precise definition of the joint pdf resolves the potential confusion: if we write

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=8 \mathbb{1}_{\mathcal{\chi}}\left(x_{1}, x_{2}\right) x_{1} x_{2} \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

using the indicator function, it is evident that this function does not factorize into a function of x_{1} and a function of x_{2} as the indicator contains both, and \mathbb{X} is not a Cartesian product - we do not have

$$
\mathbb{1}_{\chi}\left(x_{1}, x_{2}\right)=\mathbb{1}_{(0,1)}\left(x_{1}\right) \times \mathbb{1}_{(0,1)}\left(x_{2}\right)
$$

for example.

