Math 556: Mathematical Statistics I

Basic properties of Multivariate Distributions

A random vector (or vector random variable) $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ is a d-dimensional extension of a random variable. We define

- Joint cdf: $F_{\mathbf{X}}(\mathbf{x})=F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)$ defined by

$$
F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=P_{X_{1}, \ldots, X_{d}}\left[\bigcap_{j=1}^{d}\left(X_{j} \in\left(-\infty, x_{j}\right]\right)\right]=P_{X_{1}, \ldots, X_{d}}\left[\bigcap_{j=1}^{d}\left(X_{j} \leq x_{j}\right)\right] .
$$

This function has the following properties:
(i) Limit behaviour:

$$
\lim _{\text {Any } j: x_{j} \rightarrow-\infty} F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=0 \quad \lim _{j: x_{j} \rightarrow \infty} F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=1
$$

(ii) Non-decreasing in each dimension: for all j and any $h>0$

$$
F_{X_{1}, \ldots, X_{j}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{j}, \ldots, x_{d}\right) \leq F_{X_{1}, \ldots, X_{j}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{j}+h, \ldots, x_{d}\right)
$$

(iii) Right-continuous in each dimension: for all j

$$
\lim _{h \longrightarrow 0^{+}} F_{X_{1}, \ldots, X_{j}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{j}+h, \ldots, x_{d}\right)=F_{X_{1}, \ldots, X_{j}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{j}, \ldots, x_{d}\right)
$$

(iv) Marginalization: without loss of generality, consider $x_{1} \longrightarrow \infty$. We have from the definition of the joint cdf that

$$
\lim _{x_{1} \longrightarrow \infty} F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=F_{X_{2}, \ldots, X_{d}}\left(x_{2}, \ldots, x_{d}\right)
$$

where the right-hand side is the joint cdf of $\left(X_{2}, \ldots, X_{d}\right)$. This result holds whichever component we allow to increase to infinity. It also holds if we allow more than one component to increase to infinity.
The joint distribution of $\left(X_{1}, \ldots, X_{d}\right)$ thus defines the marginal distribution of any subset of the components of $\left(X_{1}, \ldots, X_{d}\right)$.

- Joint pmf: If all the elements of X are discrete, then we can consider the joint pmf denoted $f_{\mathbf{X}}(\mathbf{x})=f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)$ defined by

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=P_{X_{1}, \ldots, X_{d}}\left[\bigcap_{j=1}^{d}\left(X_{j}=x_{j}\right)\right] .
$$

This function has the following properties:
(i) Boundedness: $0 \leq f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) \leq 1$.
(ii) Summability: by the probability axioms, if \mathbb{X} denotes the support of the joint pmf

$$
\sum_{\mathbf{x} \in \mathbb{X}} f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=1 .
$$

- Joint pdf: If we can represent

$$
F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{d}} f_{X_{1}, \ldots, X_{d}}\left(t_{1}, \ldots, t_{d}\right) d t_{d} \ldots d t_{1}
$$

then X is absolutely continuous with joint pdf $f_{\mathbf{X}}(\mathbf{x})=f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)$. This function has the following properties:
(i) Non-negativity: $f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) \geq 0$.
(ii) Integrability:

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}=1
$$

In the continuous case, we have that

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\left.\frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{d}}\left\{F_{X_{1}, \ldots, X_{d}}\left(t_{1}, \ldots, t_{d}\right)\right\}\right|_{t_{1}=x_{1}, \ldots, t_{d}=x_{d}}
$$

wherever $F_{X_{1}, \ldots, X_{d}}$ is differentiable.

- Conditional pmf/pdf: for any partition of $\mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$, we may define the conditional pmf $/ \mathrm{pdf}$ for \mathbf{X}_{2}, given that $\mathbf{X}_{1}=\mathbf{x}_{1}$ as

$$
f_{\mathbf{X}_{2} \mid \mathbf{X}_{1}}\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right)=\frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right)}
$$

provided $f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right)>0$. This allows us to deduce the chain rule factorization

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=f_{X_{1}}\left(x_{1}\right) \prod_{j=2}^{d} f_{X_{j} \mid X_{1}, \ldots, X_{j-1}}\left(x_{j} \mid x_{1}, \ldots, x_{j-1}\right)
$$

provided all the conditional distributions are well-defined. In the factorization, the labelling of the variables is arbitrary.

- Independence: X_{1}, \ldots, X_{d} are independent if, for all $\left(x_{1}, \ldots, x_{d}\right)$

$$
F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} F_{X_{j}}\left(x_{j}\right)
$$

or equivalently

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} f_{X_{j}}\left(x_{j}\right) .
$$

This definition is equivalent to saying that

$$
f_{X_{1} \mid X_{2}, \ldots, X_{d}}\left(x_{1} \mid x_{2} \ldots, x_{d}\right)=f_{X_{1}}\left(x_{1}\right)
$$

for all possible selections of x_{1}, \ldots, x_{d}; note that the labelling of the variables is arbitrary, so this definition applies equivalently for any permutation of the labels.

- Region probabilities: Let $A \subseteq \mathbb{R}^{d}$. To compute $P_{X_{1}, \ldots, X_{d}}\left[\left(X_{1}, \ldots, X_{d}\right) \in A\right]$ we may write

$$
\begin{aligned}
P_{X_{1}, \ldots, X_{d}}\left[\left(X_{1}, \ldots, X_{d}\right) \in A\right] & =\int \underset{A}{\ldots \int} d F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) \\
& \equiv \begin{cases}\sum_{\mathrm{x} \in A} f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) & \text { Discrete case } \\
\iint_{A} \ldots \int f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d} & \text { Continuous case }\end{cases}
\end{aligned}
$$

where the $d F$ notation is used to unify the discrete and continuous cases.

- 1-1 Transformations: For continuous variables $\left(X_{1}, \ldots, X_{d}\right)$ with joint pdf $f_{X_{1}, \ldots, X_{d}}$ we can construct the pdf of a transformed set of variables $\left(Y_{1}, \ldots, Y_{d}\right)$ where $\mathbf{Y}=g(\mathbf{X})$ is a d-dimensional transformation by noting that for arbitrary $B \subset \mathbb{R}^{d}$

$$
P_{\mathbf{Y}}[\mathbf{Y} \in B] \equiv P_{\mathbf{X}}\left[\mathbf{X} \in B^{-1}\right]
$$

where

$$
B^{-1}=\{\mathbf{x}: g(\mathbf{x}) \in B\}
$$

That is, we have that

$$
\int_{B} f_{\mathbf{Y}}(\mathbf{y}) d \mathbf{y}=\int_{B^{-1}} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

and we may compute $f_{\mathbf{Y}}(\mathbf{y})$ from $f_{\mathbf{X}}(\mathbf{x})$ by changing variables in the right-hand integral and then equating the integrands.

In the 1-1 case, the computation proceeds using the following steps:

1. Write down the set of component transformation functions g_{1}, \ldots, g_{d}

$$
\begin{gathered}
Y_{1}=g_{1}\left(X_{1}, \ldots, X_{d}\right) \\
\vdots \\
Y_{d}=g_{d}\left(X_{1}, \ldots, X_{d}\right)
\end{gathered}
$$

2. Write down the set of component inverse transformation functions $g_{1}^{-1}, \ldots, g_{d}^{-1}$

$$
\begin{gathered}
X_{1}=g_{1}^{-1}\left(Y_{1}, \ldots, Y_{d}\right) \\
\vdots \\
X_{d}=g_{d}^{-1}\left(Y_{1}, \ldots, Y_{d}\right)
\end{gathered}
$$

3. Consider the joint support of the new variables, $\mathbb{Y}^{(k)}$.
4. Compute the Jacobian of the transformation: first form the matrix of partial derivatives

$$
D_{y}=\left[\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{d}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{d}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{d}}{\partial y_{1}} & \frac{\partial x_{d}}{\partial y_{2}} & \cdots & \frac{\partial x_{d}}{\partial y_{d}}
\end{array}\right]
$$

where, for each (i, j)

$$
\frac{\partial x_{i}}{\partial y_{j}}=\frac{\partial}{\partial y_{j}}\left\{g_{i}^{-1}\left(y_{1}, \ldots, y_{d}\right)\right\}
$$

and then set $\left|J\left(y_{1}, \ldots, y_{d}\right)\right|=\left|\operatorname{det} D_{y}\right|$
Note that

$$
\operatorname{det} D_{y}=\operatorname{det} D_{y}^{\top}
$$

so that an alternative but equivalent Jacobian calculation can be carried out by forming D_{y}^{\top}. Note also that

$$
\left|J\left(y_{1}, \ldots, y_{d}\right)\right|=\frac{1}{\left|J\left(x_{1}, \ldots, x_{d}\right)\right|}
$$

where $J\left(x_{1}, \ldots, x_{d}\right)$ is the Jacobian of the transformation regarded in the reverse direction (that is, if we start with $\left(Y_{1}, \ldots, Y_{d}\right)$ and transfrom to $\left(X_{1}, \ldots, X_{d}\right)$)
5. Write down the joint pdf of $\left(Y_{1}, \ldots, Y_{d}\right)$ as

$$
\begin{aligned}
& \quad f_{Y_{1}, \ldots, Y_{d}}\left(y_{1}, \ldots, y_{d}\right)=f_{X_{1}, \ldots, X_{d}}\left(g_{1}^{-1}\left(y_{1}, \ldots, y_{d}\right), \ldots, g_{d}^{-1}\left(y_{1}, \ldots, y_{d}\right)\right) \times\left|J\left(y_{1}, \ldots, y_{d}\right)\right| \\
& \text { for }\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d} \text {. }
\end{aligned}
$$

In practice, it is useful to consider how the minimal support of $f_{\mathbf{X}}, \mathbb{X}$, maps under g, to deduce the minimal support of $f_{\mathbf{Y}}, \mathbb{Y}$, say.

- Expectations: If $g($.$) is some k$-dimensional function, then

$$
\begin{aligned}
\mathbb{E}_{\mathbf{X}}[g(\mathbf{X})] & =\mathbb{E}_{X_{1}, \ldots, X_{d}}\left[g\left(X_{1}, \ldots, X_{d}\right)\right] \\
& =\int \ldots \int g\left(x_{1}, \ldots, x_{d}\right) d F_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) \\
& \equiv \begin{cases}\sum_{\mathbf{x} \in \mathbb{X}} g\left(x_{1}, \ldots, x_{d}\right) f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) & \text { Discrete case } \\
\int \ldots \int g\left(x_{1}, \ldots, x_{d}\right) f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d} & \text { Continuous case }\end{cases}
\end{aligned}
$$

The result of the calculation is a k-dimensional constant.

