MATH 556: MATHEMATICAL STATISTICS I PROBABILITY PRIMER

1. EVENTS AND THE SAMPLE SPACE

- An experiment is a one-off or repeatable process or procedure for which
 - (a) there is a well-defined set of (possible) outcomes
 - (b) the *actual* outcome is not known with certainty.
- A sample outcome, ω , is precisely one of the (possible) outcomes of an experiment.
- The **sample space**, Ω , of an experiment is the set of all (possible) outcomes.

 Ω is a set in the mathematical sense, so set theory notation can be used. For example, if the sample outcomes are denoted $\omega_1, \omega_2, \ldots$, say, then the sample space of an experiment can be

- a FINITE list of sample outcomes, $\{\omega_1, \ldots, \omega_k\}$
- an INFINITE list of sample outcomes, $\{\omega_1, \omega_2, \ldots\}$
- an INTERVAL or REGION of a real space, $\{\omega : \omega \in A \subseteq \mathbb{R}^d\}$
- An event, *E*, is a designated collection of sample outcomes. Event *E* occurs if the actual outcome of the experiment is one of this collection; for any event *E*, *E* ⊆ Ω. Particular events are:
 - the collection of *all* sample outcomes, Ω ,
 - the collection of *none* of the sample outcomes, \emptyset (the **empty set**).

1.1. OPERATIONS IN SET THEORY

Consider events $E, F \subseteq \Omega$. Then the three basic set theory operations are

UNION	$E \cup F$	" E or F or both occur"
INTERSECTION	$E\cap F$	"both <i>E</i> and <i>F</i> occur"
COMPLEMENT	E'	" E does not occur"

Consider events $E, F, G \subseteq \Omega$.

COMMUTATIVITY	$E \cup F = F \cup E$
	$E \cap F = F \cap E$
ASSOCIATIVITY	$E \cup (F \cup G) = (E \cup F) \cup G$
	$E \cap (F \cap G) = (E \cap F) \cap G$
DISTRIBUTIVITY	$E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$
	$E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$
DE MORGAN'S LAWS	$\left(E\cup F\right)'=E'\cap F'$
	$(E \cap F)' = E' \cup F'$

For $k \geq 2$ events, E_1, E_2, \ldots, E_k , write

$$\bigcup_{i=1}^{k} E_i = E_1 \cup \ldots \cup E_k \quad \text{and} \quad \bigcap_{i=1}^{k} E_i = E_1 \cap \ldots \cap E_k$$

for the union and intersection of E_1, E_2, \ldots, E_k , with a further extension for *k* infinite.

1.2. MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Events *E* and *F* are **mutually exclusive** if $E \cap F = \emptyset$, that is, if events *E* and *F* cannot both occur. If the sets of sample outcomes represented by *E* and *F* are **disjoint** (have no common element), then *E* and *F* are mutually exclusive. Events $E_1, \ldots, E_k \subseteq \Omega$ form a **partition** of event $F \subseteq \Omega$ if

(a)
$$E_i \cap E_j = \emptyset$$
 for $i \neq j, i, j = 1, ..., k$
(b) $\bigcup_{i=1}^k E_i = F$

so that each element of the collection of sample outcomes corresponding to event F is in *one and only one* of the collections corresponding to events E_1, \ldots, E_k .

1.3. SIGMA-ALGEBRAS

A (countable) collection of subsets, \mathcal{F} , of sample space Ω , say $\mathcal{F} = \{E_1, E_2, \ldots\}$, is a *sigma-algebra* if

- (I) $\Omega \in \mathcal{F}$
- (II) $E \in \mathcal{F} \Longrightarrow E' \in \mathcal{F}$
- (III) If $E_1, E_2, \ldots \in \mathcal{F}$, then

$$\bigcup_{i=1}^{\infty} E_i \in \mathcal{F}$$

If \mathcal{F} is a sigma-algebra of subsets of Ω , then

- (i) $\emptyset \in \mathcal{F}$
- (ii) If $E_1, E_2 \in \mathcal{F}$, then

 $E_1', E_2' \in \mathcal{F} \implies E_1' \cup E_2' \in \mathcal{F} \implies (E_1' \cup E_2')' \in \mathcal{F} \implies E_1 \cap E_2 \in \mathcal{F}$

so \mathcal{F} is also closed under intersection.

2. The Probability Function

For an event $E \subseteq \Omega$, the **probability that** *E* **occurs** is written P(E).

Interpretation : P(.) is a *set-function* that assigns "weight" to collections of possible outcomes of an experiment. There are many ways to think about precisely how this assignment is achieved;

- CLASSICAL : "Consider equally likely sample outcomes ..."
- FREQUENTIST : "Consider long-run relative frequencies ..."
- SUBJECTIVE : "Consider personal degree of belief ..."

or merely think of P(.) as a set-function.

3. PROPERTIES OF P(.): The Axioms of Probability

Consider sample space Ω . Then probability function P(.) acts on a sigma-algebra \mathcal{F} defined on Ω

 $P:\mathcal{F}\longrightarrow \mathbb{R}$

and satisfies the following properties:

- (I) Let $E \in \mathcal{F}$. Then $0 \leq P(E) \leq 1$.
- (II) $P(\Omega) = 1$.
- (III) If E_1, E_2, \ldots are mutually exclusive events, then

$$\mathbf{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mathbf{P}(E_i).$$

3.1. COROLLARIES TO THE PROBABILITY AXIOMS

For events $E, F \subseteq \Omega$

- 1. P(E') = 1 P(E), and hence $P(\emptyset) = 0$.
- 2. If $E \subseteq F$, then $P(E) \leq P(F)$.
- 3. In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$.
- 4. $P(E \cap F') = P(E) P(E \cap F).$
- 5. $P(E \cup F) \le P(E) + P(F)$.
- 6. $P(E \cap F) \ge P(E) + P(F) 1$.
- 7. The **general addition rule**: let E_1, \ldots, E_n be events in Ω . Then

(i)
$$P\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} P(E_{i}).$$

(ii) $P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i} P(E_{i}) - \sum_{i < j} P(E_{i} \cap E_{j}) + \sum_{i < j < k} P(E_{i} \cap E_{j} \cap E_{k}) - \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} E_{i}\right)$

(i) is known as Boole's Inequality, and follows from 5.; for (ii), construct the events $F_1 = E_1$ and

$$F_i = E_i \cap \left(\bigcup_{k=1}^{i-1} E_k\right)'$$

for i = 2, 3, ..., n. Then $F_1, F_2, ..., F_n$ are disjoint, and $\bigcup_{i=1}^n E_i = \bigcup_{i=1}^n F_i$, so $P\left(\bigcup_{i=1}^n E_i\right) = P\left(\bigcup_{i=1}^n F_i\right) = \sum_{i=1}^n P(F_i).$

Now, by the corollary above, for i = 2, 3, ..., n,

$$\mathbf{P}(F_i) = \mathbf{P}(E_i) - \mathbf{P}\left(E_i \cap \left(\bigcup_{k=1}^{i-1} E_k\right)\right) = \mathbf{P}(E_i) - \mathbf{P}\left(\bigcup_{k=1}^{i-1} (E_i \cap E_k)\right)$$

and the result follows by recursive expansion of the second term for i = 2, 3, ..., n.

4. CONDITIONAL PROBABILITY

For events $E, F \subseteq \Omega$ with P(E) > 0, the **conditional probability** that *F* occurs **given** that *E* occurs is written P(F|E), and is defined by

$$\mathbf{P}(F|E) = \frac{\mathbf{P}(E \cap F)}{\mathbf{P}(E)}$$

Thus $P(E \cap F) = P(E)P(F|E)$, and in general, for events E_1, \ldots, E_k ,

$$\mathbf{P}\left(\bigcap_{i=1}^{k} E_i\right) = \mathbf{P}(E_1)\mathbf{P}(E_2|E_1)\mathbf{P}(E_3|E_1 \cap E_2)\dots\mathbf{P}(E_k|E_1 \cap E_2 \cap \dots \cap E_{k-1}).$$

Independence: Events *E* and *F* are **mutually independent** if

$$P(E|F) = P(E)$$
 so that $P(E \cap F) = P(E)P(F)$

Extension : Events E_1, \ldots, E_k are independent if, for **every** subset of events of size $l \le k$, indexed by $\{i_1, \ldots, i_l\}$, say,

$$\mathbf{P}\left(\bigcap_{j=1}^{l} E_{i_j}\right) = \prod_{j=1}^{l} \mathbf{P}(E_{i_j}).$$

5. THE THEOREM OF TOTAL PROBABILITY

Let E_1, \ldots, E_k be a partition of Ω , and let $F \subseteq \Omega$. Then

$$\mathbf{P}(F) = \sum_{i=1}^{k} \mathbf{P}(F|E_i) \mathbf{P}(E_i)$$

To see this, note that E_1, \ldots, E_k form a partition of Ω , and $F \subseteq \Omega$, so

$$F = (F \cap E_1) \cup \ldots \cup (F \cap E_k)$$
$$\implies P(F) = \sum_{i=1}^k P(F \cap E_i) = \sum_{i=1}^k P(F|E_i)P(E_i)$$

as $E_i \cap E_j = \emptyset$.

Extension: If we assume that Axiom III holds, that is, that P is countably additive, then the theorem still holds, that is, if E_1, E_2, \ldots are a partition of Ω , and $F \subseteq \Omega$, then

$$\mathbf{P}(F) = \sum_{i=1}^{\infty} \mathbf{P}(F \cap E_i) = \sum_{i=1}^{\infty} \mathbf{P}(F|E_i)\mathbf{P}(E_i)$$

if $P(E_i) > 0$ for all *i*.

6. BAYES THEOREM

Suppose $E, F \subseteq \Omega$, with P(E), P(F) > 0. Then

$$\mathbf{P}(E|F) = \frac{\mathbf{P}(F|E)\mathbf{P}(E)}{\mathbf{P}(F)}.$$

This follows by the identity

$$P(E|F)P(F) = P(E \cap F) = P(F|E)P(E)$$
, so $P(E|F)P(F) = P(F|E)P(E)$.

Extension: If E_1, \ldots, E_k are disjoint, with $P(E_i) > 0$ for $i = 1, \ldots, k$, and form a partition of $F \subseteq \Omega$, then

$$P(E_i|F) = \frac{P(F|E_i)P(E_i)}{\sum_{i=1}^{k} P(F|E_i)P(E_i)}$$

The extension to the countably additive (infinite) case also holds.

NOTE: in general, $P(E|F) \neq P(F|E)$

7. COUNTING TECHNIQUES

Suppose that an experiment has N equally likely sample outcomes. If event E corresponds to a collection of sample outcomes of size n(E), then

$$\mathbf{P}(E) = \frac{n(E)}{N}$$

so it is necessary to be able to evaluate n(E) and N in practice.

7.1. THE MULTIPLICATION PRINCIPLE

If operations labelled $1, \ldots, r$ can be carried out in n_1, \ldots, n_r ways respectively, then there are

$$\prod_{i=1}^r n_i = n_1 \times \ldots \times n_r$$

ways of carrying out the *r* operations in total.

Example 1 If each of r trials of an experiment has N possible outcomes, then there are N^r possible sequences of outcomes in total. For example:

- (i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are 5^{20} different ways of completing the exam.
- (ii) There are 2^m subsets of m elements (as each element is either in the subset, or **not** in the subset, which is equivalent to m trials each with two outcomes).

7.2. SAMPLING FROM A FINITE POPULATION

Consider a collection of *N* items, and a sequence of operations labelled 1, ..., r such that the *i*th operation involves **selecting** one of the items remaining after the first i - 1 operations have been carried out. Let n_i denote the number of ways of carrying out the *i*th operation, for i = 1, ..., r. Then

- (a) **Sampling with replacement :** an item is returned to the collection after selection. Then $n_i = N$ for all *i*, and there are N^r ways of carrying out the *r* operations.
- (b) **Sampling without replacement :** an item is not returned to the collection after selected. Then $n_i = N i + 1$, and there are $N(N 1) \dots (N r + 1)$ ways of carrying out the *r* operations.

e.g. Consider selecting 5 cards from 52. Then

- (a) leads to 52^5 possible selections, whereas
- (b) leads to $52 \times 51 \times 50 \times 49 \times 48$ possible selections

NOTE : The **order** in which the operations are carried out may be important e.g. in a raffle with three prizes and 100 tickets, the draw $\{45, 19, 76\}$ is different from $\{19, 76, 45\}$.

NOTE : The items may be **distinct** (unique in the collection), or **indistinct** (of a unique type in the collection, but not unique individually). For example, the numbered balls in a lottery, or individual playing cards, are **distinct**. However balls in the lottery are regarded as "WINNING" or "NOT WINNING", or playing cards are regarded in terms of their suit only, are **indistinct**.

7.3. PERMUTATIONS AND COMBINATIONS

- A **permutation** is an *ordered* arrangement of a set of items.
- A combination is an *unordered* arrangement of a set of items.
- **RESULT 1** The number of permutations of *n* distinct items is $n! = n(n-1) \dots 1$.

RESULT 2 The number of permutations of *r* from *n* distinct items is, by the multiplication principle,

$$P_r^n = \frac{n!}{(n-r)!} = n(n-1) \times \ldots \times (n-r+1)$$

If the order in which items are selected is not important, then

RESULT 3 The number of combinations of r from n distinct items is

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!} \qquad (\operatorname{as} P_r^n = r!C_r^n).$$

-recall the **Binomial Theorem**, namely

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

Then the number of subsets of *m* items can be calculated as follows; for each $0 \le j \le m$, choose a subset of *j* items from *m*. Then

Total number of subsets
$$=\sum_{j=0}^{m} \binom{m}{j} = (1+1)^m = 2^m.$$

If the items are **indistinct**, but each is of a unique type, say Type I, ..., Type κ say, (the so-called **Urn Model**) then, then a more general formula applies:

RESULT 4 The number of distinguishable permutations of *n* indistinct objects, comprising n_i items of type *i* for $i = 1, ..., \kappa$ is

$$\frac{n!}{n_1!n_2!\dots n_\kappa!}$$

Special Case : if $\kappa = 2$, then the number of distinguishable permutations of the n_1 objects of type I, and $n_2 = n - n_1$ objects of type II is

$$C_{n_2}^n = \frac{n!}{n_1!(n-n_1)!}$$

Also, there are C_r^n ways of partitioning *n* **distinct** items into two "cells", with *r* in one cell and n - r in the other.

7.4. PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a collection of sample outcomes of size n(E), then

$$\mathbf{P}(E) = \frac{n(E)}{N}$$

Example 2 A True/False exam has 20 questions. Let E ="16 answers correct at random". Then

 $P(E) = \frac{\text{Number of ways of getting 16 out of 20 correct}}{\text{Total number of ways of answering 20 questions}} = \frac{\binom{20}{16}}{2^{20}} = 0.0046$

Example 3 *Sampling without replacement.* Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects without replacement. Let E="precisely 2 Type I objects selected" We need to calculate N and n(E) in order to calculate P(E). In this case N is the number of ways of choosing 5 from 30 items, and hence

$$N = \binom{30}{5}$$

To calculate n(E), we think of *E* occurring by first choosing 2 Type I objects from 10, and then choosing 3 Type II objects from 20, and hence, by the multiplication rule,

$$n(E) = \binom{10}{2} \binom{20}{3}$$

Therefore

$$P(E) = \frac{\binom{10}{2}\binom{20}{3}}{\binom{30}{5}} = 0.360$$

This result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$F = \bigcap_{i=1}^{5} F_{ij}$$

where F_{ij} = "type *j* object obtained on draw *i*" *i* = 1,...,5, *j* = 1,2. Then

$$\mathbf{P}(F) = \mathbf{P}(F_{11})\mathbf{P}(F_{21}|F_{11})\dots\mathbf{P}(F_{52}|F_{11},F_{21},F_{32},F_{42}) = \frac{10}{30}\frac{9}{29}\frac{20}{28}\frac{19}{27}\frac{18}{26}$$

Now consider event *G* where G = "sequence of objects 12122 obtained". Then

$$\mathbf{P}(G) = \frac{10}{30} \frac{20}{29} \frac{9}{28} \frac{19}{27} \frac{18}{26}$$

i.e. P(G) = P(F). In fact, **any** sequence containing two Type I and three Type II objects has this probability, and there are $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$ such sequences. Thus, as all such sequences are mutually exclusive,

$$\mathbf{P}(E) = \binom{5}{2} \frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26} = \frac{\binom{10}{2}\binom{20}{3}}{\binom{30}{5}}.$$

Example 4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects with replacement. Let E = "precisely 2 Type I objects selected". Again, we need to calculate N and n(E) in order to calculate P(E). In this case N is the number of ways of choosing 5 from 30 items with replacement, and hence

$$N = 30^{5}$$

To calculate n(E), we think of *E* occurring by first choosing 2 Type I objects from 10, and 3 Type II objects from 20 in any order. Consider such sequences of selection

Sequence	Number of ways
$\frac{1}{1}\frac{1}{2}\frac{2}{2}\frac{2}{2}\\ \frac{1}{2}\frac{2}{1}\frac{2}{2}\frac{2}{2}$	$\begin{array}{c} 10 \times 10 \times 20 \times 20 \times 20 \\ 10 \times 20 \times 10 \times 20 \times 20 \end{array}$
:	:

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in $10^2 20^3$ ways. As before there are C_2^5 such sequences, and thus

$$\mathbf{P}(E) = \frac{\binom{5}{2} 10^2 20^3}{30^5} = 0.329.$$

Again, this result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$\mathbf{P}(F) = \left(\frac{10}{30}\right)^2 \left(\frac{20}{30}\right)^3$$

as the results of the draws are **independent**. This result is true for any sequence containing two Type I and three Type II objects, and there are C_2^5 such sequences that are mutually exclusive, so

$$\mathbf{P}(E) = \begin{pmatrix} 5\\2 \end{pmatrix} \left(\frac{10}{30}\right)^2 \left(\frac{20}{30}\right)^3$$