
MATH 556: MATHEMATICAL STATISTICS I

SOME MATHEMATICAL DEFINITIONS AND RESULTS

Definition: Limits of sequences of reals
Sequence {an} has limit a as n −→ ∞, written

lim
n−→∞

an = a

if, for every ϵ > 0, there exists an N = N(ϵ) such that |an − a| < ϵ for all n > N . We say that {an} is a
convergent sequence, and that {an} converges to a.

Definition: Limits of functions
Let f be a real-valued function of real argument x.

• Limit as x −→ ∞:
f(x) −→ a or lim

x−→∞
f(x) = a

as x −→ ∞ if, every ϵ > 0, ∃M = M(ϵ) such that |f(x)− a| < ϵ, ∀ x > M

• Limit as x −→ x±0 :
f(x) −→ a or lim

x−→x±
0

f(x) = a

as x −→ x±0 (that is, x −→ x−0 means “from below” and x −→ x+0 means “from above”) if, for all
ϵ > 0, ∃ δ such that |f(x)− a| < ϵ, ∀ x0 < x < x0 + δ (or, respectively x0 − δ < x < x0).

• Left/Right Limit as x −→ x0:

f(x) −→ a or lim
x−→x0

f(x) = a

as x −→ x0 if
lim

x−→x+
0

f(x) = lim
x−→x−

0

f(x) = a.

Definition: Continuity
Consider function f(x) with domain X ⊆ R.

• f(x) is continuous at x0 if
lim

x−→x+
0

f(x) = lim
x−→x−

0

f(x) = f(x0)

and all limits exist. That is, for all ϵ > 0, ∃δ > 0 such that if |x− x0| < δ, then |f(x)− f(x0)| < ϵ.

• f(x) is uniformly continuous on X if, for all x1, x2 ∈ X , ∃δ > 0 such that ∀ϵ > 0

|x2 − x1| < δ =⇒ |f(x2)− f(x1)| < ϵ

• f(x) is absolutely continuous on X if, for all ϵ > 0, ∃δ > 0 such that for any finite sequence of
disjoint sub-intervals (xk1, xk2) for k = 1, . . . ,K with

K∑
k=1

(xk2 − xk1) < δ then
K∑
k=1

|f(xk2)− f(xk1)| < ϵ
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Definition: Supremum and Infimum
A set of real values S is bounded above (bounded below) if there exists a real number a (b) such that,
for all x ∈ S, x ≤ a (x ≥ b). The quantity a (b) is an upper bound (lower bound). A real value aL (bU )
is a least upper bound (greatest lower bound) if it is an upper bound (a lower bound) of S, and no
other upper (lower) bound is smaller (larger) than aL (bU ). We write

aL = supS bU = inf S

for the aL, the supremum, and bU , the infimum of S.

If S comprises a sequence of elements {xn}, then we can write

aL = sup
xn∈S

xn ≡ sup
n

xn bU = inf
xn∈S

xn ≡ inf
n

xn.

A sequence that is both bounded above and bounded below is termed bounded. Any bounded, mono-
tone real sequence is convergent.

Definition: Limit Superior and Limit Inferior
Suppose that {xn} is a bounded real sequence. Define sequences {yk} and {zk} by

yk = inf
n≥k

xn zk = sup
n≥k

xn

Then {yk} is bounded non-decreasing and {zk} is bounded non-increasing, and

lim
k→∞

yk = sup
k

yk and lim
k→∞

zk = inf
k
zk

and we can consider the limits of these convergent sequences, known as the lim sup and lim inf :

• lim sup is the limiting least upper bound
• lim inf is the limiting greatest lower bound

Specifically, we define the limit superior (or upper limit, or lim sup) and the limit inferior (or lower
limit, or lim inf ) by

lim sup
n−→∞

xn = lim
k→∞

sup
n≥k

xn = inf
k
sup
n≥k

xn = lim xn

lim inf
n−→∞

xn = lim
k→∞

inf
n≥k

xn = sup
k

inf
n≥k

xn = lim xn

Then we have lim xn ≤ lim xn and limxn = x if and only if lim xn = x = lim xn.

We can define the same concepts for real functions; we write

lim sup
x−→∞

f(x) = lim
y−→∞

{
sup
x≥y

{f(x)}

}
lim inf
x−→∞

f(x) = lim
y−→∞

{
inf
x≥y

{f(x)}
}

and the limit as x −→ ∞ exists if and only if

lim sup
x−→∞

f(x) = lim inf
x−→∞

f(x) = lim
x−→∞

f(x).

For example, the function f(x) = cos(x) does not converge to any limit as x −→ ∞. But

sup
x≥y

{cos(x)} = 1 =⇒ lim sup
x−→∞

f(x) = lim
y−→∞

{
sup
x≥y

{cos(x)}

}
= lim

y−→∞
{1} = 1

and similarly lim inf
x−→∞

f(x) = −1
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Definition: Order Notation (‘little oh’ and ‘big oh’, or ‘Landau’, notation)
Consider x −→ x0 where x0 is possibly ±∞. Then we write

f(x) ∼ g(x) if
f(x)

g(x)
−→ 1 as x −→ x0

f(x) = o(g(x)) if
f(x)

g(x)
−→ 0 as x −→ x0

f(x) = O(g(x)) if
f(x)

g(x)
−→ b as x −→ x0, for some b

with similar notation for real sequences. For example

sinx = x− x3

3!
+

x5

5!
+ · · · = x+ o(x)

as x −→ 0, and
(x+ 1)3 = x3 + 3x2 + 3x+ 1 = x3 + o(x3) = o(x4)

as x −→ ∞.

Leibniz’s Rule: Let f(x, t) be a real-valued function that is continuous in t and x at least on the closed
region R ∈ R2

R ≡ {(x, t) ∈ R2 : a(t) ≤ x ≤ b(t), t0 ≤ t ≤ t1}

where a(.) and b(.) are continuous functions of t with continuous derivatives wrt t for t0 ≤ t ≤ t1.
Suppose also that the partial derivative

∂f(x, t)

∂t

is also continuous in x and t at least on R. Then for t0 ≤ t ≤ t1 we have that

d

dt

{∫ b(t)

a(t)
f(x, t) dx

}
= f(b(t), t)

db(t)

dt
− f(a(t), t)

da(t)

dt
+

∫ b(t)

a(t)

∂f(x, t)

∂t
dx.

Note that if a(t) = a and b(t) = b are constant functions, then

d

dt

{∫ b

a
f(x, t) dx

}
=

∫ a

a

∂f(x, t)

∂t
dx.
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• Series Summations:

GEOMETRIC
1

1− z
= 1 + z + z2 + · · · =

∞∑
k=0

zk |z| < 1

EXPONENTIAL ez = 1 + z +
z2

2!
+ · · · =

∞∑
k=0

zk

k!
z ∈ R

BINOMIAL (n = 1, 2, · · · ) (1 + z)n = 1 + nz +
n(n− 1)

2!
z2 + · · ·+ αzn−1 + zn =

n∑
k=0

(
n

k

)
zk

BINOMIAL (α > 0) (1 + z)α = 1 + αz +
α(α− 1)

2!
z2 + · · · =

∞∑
k=0

(
α

k

)
zk

NEG. BINOMIAL (α > 0)
1

(1− z)α
= 1 + αz +

α (α+ 1)

2!
z2 + · · · =

∞∑
k=0

(
α+ k − 1

k

)
zk |z| < 1

LOGARITHMIC − log(1− z) = z +
z2

2
+

z3

3
+ · · · =

∞∑
k=1

zk

k
|z| < 1

log(1 + z) = z − z2

2
+

z3

3
− · · · =

∞∑
k=1

(−1)k+1 z
k

k
|z| < 1

where, if Γ(.) is the gamma function, in general(
θ

x

)
=

Γ(θ + 1)

Γ(x+ 1)Γ(θ − x+ 1)
.

• Exponential Function: For real x > 0

lim
n→∞

(
1 +

x

n

)n
= lim

n→∞

(
1− x

n

)−n
= ex lim

n→∞

(
1− x

n

)n
= lim

n→∞

(
1 +

x

n

)−n
= e−x

• Taylor Series: For real-valued scalar function f and real number x0, under mild regularity as-
sumptions

f(x) =

∞∑
k=0

(x− x0)
k

k!
fk(x0) =

r∑
k=0

(x− x0)
k

k!
fk(x0) + o((x− x0)

r)

where the approximation holds as x −→ x0, and

fk(x0) =
dk

dxk
{f(x)}x=x0

if this derivative exists.
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