MATH 556 - Example Mid-Term Examination

Solutions

1. We check the three requirements
(i) Limit behaviour:

$$
\lim _{x \longrightarrow-\infty} F(x)=0 \quad \lim _{x \longrightarrow \infty} F(x)=1 .
$$

(ii) Non-decreasing property: if $x_{1}<x_{2}$, then $F\left(x_{1}\right) \leq F\left(x_{2}\right)$.
(iii) Right-continuity:

$$
\lim _{h \longrightarrow 0^{+}} F(x+h)=F(x) .
$$

(a) Not a cdf: the function is not right-continuous at zero.

3 Marks
(b) Not a cdf: the function is decreasing in x for $x>0$.

3 Marks
(c) This is the cdf for a continuous rv with support \mathbb{R}; we have

$$
\lim _{x \longrightarrow-\infty} F(x)=0 \quad \lim _{x \longrightarrow \infty} F(x)=1
$$

and as the exponential function is continuous, $F(x)$ is continuous. It is also differentiable everywhere on \mathbb{R}, with derivative

$$
\lambda \frac{\exp \{\lambda(x-2)\}}{(1+\exp \{\lambda(x-2)\})^{2}}>0
$$

so $F(x)$ is increasing on \mathbb{R}.
3 Marks
(d) Not a cdf: the function is not non-decreasing in x (as $F(x)=0$ between the non-negative integers).

3 Marks
(e) This is a cdf if we define $F(0)=1 / 2$ (this was omitted in error). Clearly we have

$$
\lim _{x \longrightarrow 0^{-}} F(x)=\lim _{x \longrightarrow 0^{+}} F(x)=\frac{1}{2}
$$

and

$$
\lim _{x \longrightarrow 2^{-}} F(x)=\lim _{x \longrightarrow 2^{+}} F(x)=1
$$

so in fact this is the cdf of a continuous random variable.
3 Marks
2. (a) From first principles, we have that Y is discrete with support $\mathbb{Y}=\{0,1,2, \ldots\}$, and for $y \in \mathbb{Y}$, we have

$$
\begin{aligned}
f_{Y}(y)=P_{Y}[Y=y] & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{0}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x \\
& =\int_{0}^{\infty} e^{-x} \frac{x^{y}}{y!} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} d x \\
& =\frac{1}{y!} \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} x^{y+\alpha-1} e^{-2 x} d x \\
& =\frac{1}{y!} \frac{1}{\Gamma(\alpha)} \frac{\Gamma(y+\alpha)}{2^{y+\alpha}}
\end{aligned}
$$

as the integrand is proportional to a $\operatorname{Gamma}(y+\alpha, 2)$ pdf. Thus

$$
P_{Y}[Y=0]=\frac{1}{2^{\alpha}}
$$

6 Marks
(b) By iterated expectation, using the Distribution Formula Sheet

$$
\mathbb{E}_{Y}[Y]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[Y \mid X]\right]=\mathbb{E}_{X}[X]=\alpha
$$

3 Marks
(c) As Z is binary, we have

$$
\mathbb{E}_{Z}[Z]=\mathbb{E}_{Y}\left[\mathbb{1}_{\{0\}}(Y)\right]=P_{Y}[Y=0]=\frac{1}{2^{\alpha}}
$$

6 Marks
3. We have that

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{x}{a} & 0 \leq x<a \\
1 & a \geq 1
\end{array} .\right.
$$

(a) We have that $Y=-\log (X / a)=-\log U$ say where $U \sim \operatorname{Uniform}(0,1)$. Hence from first principles, for $y>0$,

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{U}[-\log U \leq y]=P_{U}\left[U \geq e^{-y}\right]=1-P_{U}\left[U<e^{-y}\right]=1-e^{-y}
$$

so therefore $Y \sim \operatorname{Exponential(1),~and~hence~} \mathbb{E}_{Y}[Y]=1$ from the Distribution Formula Sheet.
(b) For $0<p<1$

$$
Q_{X}(p)=a p \quad Q_{Y}(p)=-\log (1-p)
$$

(c) By symmetry of form, we must have

$$
P_{X_{1}, X_{2}}\left[X_{1}>X_{2}\right]=\frac{1}{2} .
$$

To verify this

$$
\begin{array}{r}
P_{X_{1}, X_{2}}\left[X_{1}>X_{2}\right]=\int_{0}^{a} \int_{0}^{x_{1}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\int_{0}^{a} \int_{0}^{x_{1}} \frac{1}{a^{2}} d x_{2} d x_{1}=\frac{1}{a^{2}} \int_{0}^{a} x_{1} d x_{1}=\frac{1}{2} . \\
4 \text { MARKS }
\end{array}
$$

(d) The transformation that can achieve this is

$$
g(x)=\Phi^{-1}(x / a)
$$

where $\Phi($.$) is the standard Normal cdf. To verify this$

$$
F_{Z}(z)=P_{Z}[Z \leq z]=P_{X}\left[\Phi^{-1}(X / a) \leq z\right]=\mathrm{P}_{X}[X \leq a \Phi(z)]=\Phi(z)
$$

as required.
3 Marks
4. (a) We have by independence

$$
\mathbb{E}_{Z_{1}, Z_{2}}\left[Z_{1}^{6} Z_{2}^{9}\right]=\mathbb{E}_{Z_{1}}\left[Z_{1}^{6}\right] \mathbb{E}_{Z_{2}}\left[Z_{2}^{9}\right]=0
$$

as $\mathbb{E}_{Z_{2}}\left[Z_{2}^{9}\right]=0$, as it is an odd moment of the standard Normal distribution.
5 Marks
(b) By definition

$$
\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]=\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]-\mathbb{E}_{X_{1}}\left[X_{1}\right] \mathbb{E}_{X_{2}}\left[X_{2}\right]
$$

where

$$
\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]=\mathbb{E}_{Z_{1}}\left[Z_{1}^{3}\right]=0 \quad \mathbb{E}_{X_{1}}\left[X_{1}\right]=0
$$

so therefore $\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]=0$.
4 Marks
(c) In this case,

$$
\begin{aligned}
\log \frac{f_{0}(x)}{f_{1}(x)} & =\log \left[e^{-\left(x-\theta_{0}\right)^{2} / 2} / e^{-\left(x-\theta_{1}\right)^{2} / 2}\right] \\
& =\frac{1}{2}\left[\left(x-\theta_{1}\right)^{2}-\left(x-\theta_{0}\right)^{2}\right] \\
& =\frac{1}{2}\left[2 x\left(\theta_{0}-\theta_{1}\right)+\theta_{1}^{2}-\theta_{0}^{2}\right]
\end{aligned}
$$

Thus as $\mathbb{E}_{f_{0}}[X]=\theta_{0}$ we have

$$
K L\left(f_{0}, f_{1}\right)=\mathbb{E}_{f_{0}}\left[\log \frac{f_{0}(X)}{f_{1}(X)}\right]=\frac{1}{2}\left[2 \theta_{0}\left(\theta_{0}-\theta_{1}\right)+\theta_{1}^{2}-\theta_{0}^{2}\right]=\frac{1}{2}\left(\theta_{0}-\theta_{1}\right)^{2} .
$$

Note that here $K L\left(f_{0}, f_{1}\right)=K L\left(f_{1}, f_{0}\right)$ which is not true in general.

