## MATH 556 - MID-TERM SOLUTIONS 2008

1. (a) From first principles (univariate transformation theorem also acceptable): for $z \in(0,1 / 4)$

$$
F_{Z}(z)=P_{Z}[Z \leq z]=P_{X}[X(1-X) \leq z]=P_{X}\left[X \leq x_{1}(z) \cap X \geq x_{2}(z)\right]
$$

where $x_{1}(z)$ and $x_{2}(z)$ are the roots of the quadratic $x^{2}-x+z=0$, that is

$$
x_{1}(z)=\frac{1-\sqrt{1-4 z}}{2} \quad x_{2}(z)=\frac{1+\sqrt{1-4 z}}{2}
$$

Hence

$$
F_{Z}(z)=1-\sqrt{1-4 z} \quad 0<z<1 / 4
$$

and therefore

$$
f_{Y}(y)=\frac{2}{\sqrt{1-4 z}} \quad 0<z<1 / 4
$$

and zero otherwise. For the expectation, using the Beta integral

$$
\mathbb{E}_{f_{Z}}[Z]=\mathbb{E}_{f_{X}}[X(1-X)]=\int_{0}^{1} x(1-x) d x=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

6 MARKS
(b)

$$
P_{X_{1}, X_{2}}\left[X_{1} X_{2}>\frac{1}{2}\right]=\int_{1 / 2}^{1} \int_{1 /\left(2 x_{1}\right)}^{1} d x_{2} d x_{1}=\int_{1 / 2}^{1}\left(1-1 /\left(2 x_{1}\right)\right) d x_{1}=\left[x-\frac{1}{2} \log x_{1}\right]_{1 / 2}^{1}
$$

Hence

$$
P\left[X_{1} X_{2}>\frac{1}{2}\right]=\left(1-\frac{1}{2} \log 1\right)-\left(\frac{1}{2}-\frac{1}{2} \log \frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} \log 2
$$

As the distributions of $X_{1}$ and $1-X_{1}$ are identical, we also have

$$
P\left[\left(1-X_{1}\right)\left(1-X_{2}\right)>\frac{1}{2}\right]=\frac{1}{2}-\frac{1}{2} \log 2
$$

9 MARKS
2. (a) By properties of the multivariate normal, $\underset{\sim}{X} \sim \mathcal{N}(\underset{\sim}{0}, \Sigma)$, where

$$
\Sigma=\left[\begin{array}{rr}
1 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
1 & -2
\end{array}\right]=\left[\begin{array}{rr}
2 & -1 \\
-1 & 5
\end{array}\right]
$$

6 MARKS
(b) The covariance between random variables $Y_{1}$ and $Y_{2}$ is

$$
\operatorname{Cov}_{f_{Y_{1}, Y_{2}}}\left[Y_{1}, Y_{2}\right]=\mathbb{E}_{f_{Y_{1}, Y_{2}}}\left[Y_{1} Y_{2}\right]-\mathbb{E}_{f_{Y_{1}}}\left[Y_{1}\right] \mathbb{E}_{f_{Y_{2}}}\left[Y_{2}\right] \equiv \mathbb{E}_{f_{Z_{1}}}\left[Z_{1}^{5}\right]-\mathbb{E}_{f_{Z_{1}}}\left[Z_{1}^{2}\right] \mathbb{E}_{f_{Z_{1}}}\left[Z_{1}^{3}\right]=0
$$

as the odd moments of the standard normal are zero.
6 MARKS
(c) Find the mgf of $V$ is

$$
M_{V}(t)=\mathbb{E}_{f_{V}}\left[e^{t V}\right]=\mathbb{E}_{f_{Z_{1}, Z_{2}}}\left[\exp \left\{t\left(\alpha Z_{1}+\beta Z_{2}\right)\right\}\right]=M_{Z_{1}}(\alpha t) M_{Z_{2}}(\beta t)=\exp \left\{\left(\alpha^{2}+\beta^{2}\right) t^{2} / 2\right\}
$$

3. (a) By inspection

$$
C_{X}(t)=\mathbb{E}_{f_{X}}\left[e^{i t X}\right]=\frac{1}{2 \sigma} \int_{-\infty}^{\infty} e^{i t x} \lambda e^{-|x / \sigma|} d x
$$

But $f_{X}$ is symmetric about zero, so

$$
C_{X}(t)=\frac{1}{\sigma} \int_{0}^{\infty} \cos (t x) e^{-x / \sigma} d x=\int_{0}^{\infty} \cos (s y) e^{-y} d y
$$

where $s=\sigma t$, after changing from $x$ to $y=x / \sigma$. Integrating by parts yields

$$
C_{X}(t)=\frac{1}{1+\sigma^{2} t^{2}}
$$

as

$$
\begin{aligned}
C_{X}(s) & =\int_{0}^{\infty} \cos (s y) e^{-y} d y=\left[-\cos (s y) e^{-y}\right]_{0}^{\infty}-\int_{0}^{\infty} s \sin (s y) e^{-y} d y \\
& =1-s\left[\sin (s y) e^{-y}\right]_{0}^{\infty}-s \int_{0}^{\infty} s \cos (s y) e^{-y} d y=1-s^{2} C_{X}(s)
\end{aligned}
$$

6 MARKS
(b) (i) $X_{1}, \ldots, X_{n}$ are continuous random variables, as $\left|C_{X}(t)\right| \longrightarrow 0$ as $t \longrightarrow \infty$

4 MARKS
(ii) We have by elementary cf results that

$$
C_{T_{n}}(t)=e^{a_{n} i t}\left\{C_{X}\left(b_{n} t\right)\right\}^{n}=e^{a_{n} i t}\left\{\exp \left\{-n\left|2 b_{n} t\right|^{\alpha}\right\}\right\}=e^{a_{n} i t}\left\{\exp \left\{-n\left|b_{n}\right|^{\alpha}|2 t|^{\alpha}\right\}\right\}
$$

Thus we must have $a_{n}=0$ (as $C_{X}(t)$ is entirely real) and

$$
b_{n}=n^{-1 / \alpha}
$$

5 MARKS
4. (a) A general Exponential Family in canonical parameterization takes the form

$$
f_{X}(x \mid \eta)=h(x) c^{\star}(\eta) \exp \left\{\sum_{j=1}^{k} \eta_{j} t_{j}(x)\right\}
$$

where $\eta=\left(\eta_{1}, \ldots, \eta_{k}\right)^{\top}$ is the natural parameter vector.
4 MARKS
(b) A natural Exponential Family has $k=1$ and takes the form

$$
f_{X}(x \mid \eta)=h(x) c^{\star}(\eta) \exp \{\eta x\}
$$

where $\eta$ is the natural parameter. Let $S(X ; \eta)$ be defined by

$$
S(X ; \eta)=\frac{d}{d \eta} \log f_{X}(X ; \eta)=\frac{d}{d \eta}\left\{\log c^{\star}(\eta)\right\}+X
$$

This is the score function, and we know that $\mathbb{E}_{f_{X}}[S(X ; \eta)]=0$, so therefore

$$
0=\frac{d}{d \eta}\left\{\log c^{\star}(\eta)\right\}+\mathbb{E}_{f_{X}}[X] \quad \therefore \quad \mathbb{E}_{f_{X}}[X]=-\frac{d}{d \eta}\left\{\log c^{\star}(\eta)\right\}
$$

6 MARKS
(c) By the univariate transformation theorem

$$
f_{Y}(y \mid \alpha)=\frac{1}{\Gamma(\alpha)}\left(\frac{1}{y}\right)^{\alpha+1} \exp \left\{-\frac{1}{y}\right\} \quad x>0
$$

Thus, if $\eta=-(\alpha+1)$, we have for $x \in \mathbb{R}$

$$
f_{Y}(y \mid \eta)=I_{(0, \infty)}(y) \exp \left\{-\frac{1}{y}\right\} \frac{1}{\Gamma(-1-\eta)} \exp \{\eta \log y\}
$$

so this is an Exponential Family distribution with natural parameter $\eta=-(\alpha+1)$.

