MATH 556 - MID-TERM 2007 SOLUTIONS

1. (a) (i) We have

$$
\begin{aligned}
M_{X}(t) & =E_{f_{X}}\left[e^{t X}\right]=\sum_{x=1}^{\infty} e^{t x} f_{X}(x)=\sum_{x=1}^{\infty} e^{t x} \frac{-1}{\log (1-\phi)} \frac{\phi^{x}}{x}=\frac{-1}{\log (1-\phi)} \sum_{x=1}^{\infty} \frac{\left(\phi e^{t}\right)^{x}}{x} \\
& =\frac{\log \left(1-\phi e^{t}\right)}{\log (1-\phi)}
\end{aligned}
$$

provided $\left|\phi e^{t}\right|<1$, or equivalently $t<-\log \phi$, which ensures the required neighbourhood of zero is available as $\phi>0$. The final result follows by inspection of the summand, and the fact that the pmf is known to sum to 1 .

8 MARKS
(ii) For the expectation, by direct calculation

$$
E_{f_{X}}[X]=\sum_{x=1}^{\infty} x f_{X}(x)=\sum_{x=1}^{\infty} x \frac{-1}{\log (1-\phi)} \frac{\phi^{x}}{x}=\frac{-1}{\log (1-\phi)} \sum_{x=1}^{\infty} \phi^{x}=\frac{-1}{\log (1-\phi)} \frac{\phi}{1-\phi}
$$

(could also use the mgf)
4 MARKS
(b) By direct integration

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ \theta x^{2} / 2 & 0 \leq x<1 \\ \frac{1}{2}+\frac{\theta}{2}\left(1-e^{-2(x-1)}\right) & x \geq 1\end{cases}
$$

and as we need $F_{X}(x) \longrightarrow 1$ as $x \longrightarrow \infty$, this implies that $\theta=1$.
8 MARKS
2. (a) (i) For $0 \leq x \leq n$, using the Beta integral function

$$
f_{X}(x)=\int_{0}^{1}\binom{n}{x} y^{x}(1-y)^{n-x} d y=\binom{n}{x} \frac{\Gamma(x+1) \Gamma(n-x+1)}{\Gamma(n+2)}=\frac{1}{n+1}
$$

5 MARKS
(ii) For $x>0$, using the Gamma integral

$$
f_{X}(x)=\int_{0}^{\infty} y e^{-x y} \beta e^{-\beta y} d y=\beta \int_{0}^{\infty} y e^{-(x+\beta) y} d y=\beta \frac{\Gamma(2)}{(x+\beta)^{2}}=\frac{\beta}{(x+\beta)^{2}}
$$

(b) (i) For the cdf

$$
F_{Y_{1}}\left(y_{1}\right)=\operatorname{Pr}\left[Y_{1} \leq y_{1}\right]=\operatorname{Pr}\left[X_{1}^{2} \leq y_{1}\right]=\operatorname{Pr}\left[-\sqrt{y_{1}} \leq X_{1} \leq \sqrt{y_{1}}\right]=F_{X_{1}}\left(\sqrt{y_{1}}\right)-F_{X_{1}}\left(-\sqrt{y_{1}}\right)
$$ and thus on differentiation

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{1}{2 \sqrt{y_{1}}}\left[f_{X_{1}}\left(\sqrt{y_{1}}\right)+f_{X_{1}}\left(-\sqrt{y_{1}}\right)\right] .
$$

Substituting in the Normal pdf, we obtain that

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{1}{(2 \pi)^{1 / 2}} y^{-1 / 2} \exp \left\{-y_{1} / 2\right\}=\frac{(1 / 2)^{1 / 2}}{\Gamma(1 / 2)} y^{-1 / 2} \exp \left\{-y_{1} / 2\right\} \quad y_{1}>0
$$

and zero otherwise, so that $Y_{1} \sim \operatorname{Gamma}(1 / 2,1 / 2)$.
5 MARKS
(ii) Clearly $Z_{1}^{2}, \ldots, Z_{n}^{2}$ are independent and identically distributed $\operatorname{Gamma}(1 / 2,1 / 2)$ random variables, and thus by using mgfs, we have that, from the formula sheet

$$
M_{S_{n}}(t)=\left\{M_{Y_{1}}(t)\right\}^{n}=\left(\frac{1 / 2}{1 / 2-t}\right)^{n / 2}
$$

which is the mgf of the $\operatorname{Gamma}(n / 2,1 / 2)$ distribution.
5 MARKS
3. (a) We have that,

$$
F_{X}(x)=\operatorname{Pr}[X \leq x]=\operatorname{Pr}\left[U_{1} U_{2} \leq x\right]=\iint_{A_{x}} f_{U_{1}, U_{2}}\left(u_{1}, u_{2}\right) d u_{1} d u_{2}
$$

where $A_{x} \equiv\left\{\left(u_{1}, u_{2}\right): 0 \leq u_{1}, u_{2} \leq 1, u_{1} u_{2} \leq x\right\}$. By inspection, $F_{X}(x)=0$ if $x \leq 0$ and $F_{X}(x)=1$ if $x \geq 1$. For $0<x<1$, the figure below indicates form of the region A_{x}.

Thus, for $0<x<1$,

$$
\begin{aligned}
F_{X}(x) & =\int_{0}^{1} \int_{0}^{\min \left\{1, x / u_{1}\right\}} d u_{2} d u_{1}=\int_{0}^{1} \min \left\{1, x / u_{1}\right\} d u_{1}=\int_{0}^{x} d u_{1}+\int_{x}^{1} \frac{x}{u_{1}} d u_{1} \\
& =x+x\left[\log u_{1}\right]_{x}^{1}=x-x \log x
\end{aligned}
$$

so that

$$
f_{X}(x)=-\log x \quad 0<x<1
$$

and zero otherwise.
10 MARKS
(b) By linearity of expectations $E_{f_{Y_{1}}}\left[Y_{1}\right]=\mu_{X 1}+\mu_{X 2}$ and $E_{f_{Y_{2}}}\left[Y_{2}\right]=\mu_{X 1}-\mu_{X 2}$, so

$$
\begin{aligned}
\operatorname{cov}_{f_{Y_{1}}, f_{Y_{2}}}\left[Y_{1}, Y_{2}\right] & =E_{f_{Y_{1}}, f_{Y_{2}}}\left[Y_{1} Y_{2}\right]-\mu_{1} \mu_{2} \\
& =E_{f_{X_{1}}, f_{X_{2}}}\left[\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)\right]-\left(\mu_{X 1}+\mu_{X 2}\right)\left(\mu_{X 1}-\mu_{X 2}\right) \\
& =E_{f_{X_{1}}, f_{X_{2}}}\left[\left(X_{1}^{2}-X_{2}^{2}\right)\right]-\left(\mu_{X 1}^{2}-\mu_{X 2}^{2}\right) \\
& =\left(E_{f_{X_{1}}}\left[X_{1}^{2}\right]-\mu_{X 1}^{2}\right)-\left(E_{f_{X_{2}}}\left[X_{2}^{2}\right]-\mu_{X 2}^{2}\right) \\
& =\sigma_{X_{1}}^{2}-\sigma_{X_{2}}^{2}
\end{aligned}
$$

6 MARKS
We cannot, in general, discern whether Y_{1} and Y_{2} are independent. If $\sigma_{X_{1}} \neq \sigma_{X_{2}}$, then the covariance is non-zero, so Y_{1} and Y_{2} are not independent. However, even if $\sigma_{X_{1}}=$ $\sigma_{X_{2}}$, so that the covariance is zero, we still cannot tell if Y_{1} and Y_{2} are independent, as uncorrelatedness does not imply independence. It is possible to construct examples where Y_{1} and Y_{2} are independent or are not independent.

4 MARKS
4. (a) We have by the triangle inequality that

$$
\left|C_{X}(t)\right| \leq \alpha\left|C_{1}(t)\right|+(1-\alpha)\left|C_{2}(t)\right| \longrightarrow 0 \quad \text { as } \quad|t| \longrightarrow \infty
$$

as $C_{1}(t)$ and $C_{2}(t)$ are the cfs for continuous rvs. Thus C_{X} is also the $c f$ for a continuous pdf. Alternatively, let

$$
f_{X}(x)=\alpha f_{1}(x)+(1-\alpha) f_{2}(x) .
$$

This is a valid pdf, and the corresponding of is

$$
\begin{aligned}
C_{X}(t)=\int_{-\infty}^{\infty} e^{i t x} f_{X}(x) d x & =\int_{-\infty}^{\infty} e^{i t x}\left[\alpha f_{1}(x)+(1-\alpha) f_{2}(x)\right] d x \\
& =\alpha \int_{-\infty}^{\infty} e^{i t x} f_{1}(x) d x+(1-\alpha) \int_{-\infty}^{\infty} e^{i t x} f_{2}(x) d x \\
& =\alpha C_{1}(t)+(1-\alpha) C_{2}(t)
\end{aligned}
$$

so we have found a pdf with the correct cf.
(b) From the formula sheet

$$
C_{Y}(t)=e^{2 i t} C_{X}(-3 t)
$$

(c) If we define X_{1} and X_{2} to be independent and have the same distribution as X, and set

$$
Z_{1}=X_{1}+X_{2} \quad Z_{2}=X_{1}-X_{2}
$$

then the cfs of Z_{1} and Z_{2} have the correct form. Note that

$$
C_{-X}(t)=\int_{-\infty}^{\infty} e^{i t x} f_{-X}(x) d x=\int_{-\infty}^{\infty} e^{-i t x} f_{X}(x) d x=C_{X}(-t)=\bar{C}_{X}(t)
$$

8 MARKS
(d) We have that

$$
C_{X}(t)=\frac{1}{3}(1+2 \cos (2 t)) \quad t \in \mathbb{R}
$$

so that

$$
\limsup _{|t| \longrightarrow \infty}\left|C_{X}(t)\right|=1
$$

so this is the cf of a discrete distribution. Using the inversion formula,

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i t x} C_{X}(t) d t
$$

or merely by inspection, we find that

$$
f_{X}(x)=\frac{1}{3} \quad x \in\{-2,0,2\}
$$

and zero otherwise. Note that

$$
\int_{-\pi}^{\pi} e^{-i t x} C_{X}(t) d t=\frac{1}{3} \int_{-\pi}^{\pi}\left[e^{-i t x}+e^{i t(2-x)}+e^{-i t(2+x)}\right] d t
$$

and from the result in lectures, for integer x,

$$
\int_{-\pi}^{\pi} e^{i t x} d t= \begin{cases}2 \pi & x=0 \\ 0 & x \neq 0\end{cases}
$$

so that in the inversion formula integral only the cases $x=-2,0,2$ give non-zero results.
6 MARKS

