MATH 556 - EXERCISES 5: Solutions

1. (a) This is not an Exponential Family distribution; the support is parameter dependent.
(b) This is an EF distribution with $m=1$:

$$
f(x ; \theta)=\frac{\mathbb{1}_{\{1,2,3, \ldots\}}(x)}{x} \frac{-1}{\log (1-\theta)} \exp \{x \log \theta\}=\exp \{c(\theta) T(x)-A(\theta)\} h(x)
$$

- $h(x)=\frac{\mathbb{1}_{\{1,2,3, \ldots\}}(x)}{x}$
- $A(\theta)=\log (-\log (1-\theta))$
- $c(\theta)=\log (\theta)$
- $T(x)=x$
so the natural parameter is $\eta=\log (\theta)$.

2. (a) Suppose that $\eta_{1}, \eta_{2} \in \mathcal{H}$ and $0 \leq t \leq 1$. Then

$$
\begin{aligned}
\int h(x) e^{\left(t \eta_{1}+(1-t) \eta_{2}\right)^{\top} T(x)} d x & =\int h(x) e^{\left(t \eta_{1}\right)^{\top} T(x)} e^{\left((1-t) \eta_{2}\right)^{\top} T(x)} d x \\
& \leq\left\{\int h(x) e^{\left(t \eta_{1}\right)^{\top} T(x)} d x\right\}\left\{\int h(x) e^{\left((1-t) \eta_{2}\right)^{\top} T(x)} d x\right\} \\
& \leq\left\{\int h(x) e^{\eta_{1}^{\top} T(x)} d x\right\}^{t}\left\{\int h(x) e^{\eta_{2}^{\top} T(x)} d x\right\}^{(1-t)}<\infty
\end{aligned}
$$

so $t \eta_{1}+(1-t) \eta_{2} \in \mathcal{H}$.
(b) By inspection

$$
\log \frac{f_{X}\left(x ; \eta_{1}\right)}{f_{X}\left(x ; \eta_{2}\right)}=\left(\eta_{1}-\eta_{2}\right) T(x)-\left(K\left(\eta_{1}\right)-K\left(\eta_{2}\right)\right)
$$

Note that this ratio is zero for all x if and only if $\eta_{1}=\eta_{2}$, unless $T(x)$ is a constant, t_{0}, say, for all x. In this latter case, we have that

$$
K(\eta)=\log \left\{\int h(x) \exp \left\{\eta t_{0}\right\} d x\right\}=\eta t_{0}
$$

in which case

$$
\log \frac{f_{X}\left(x ; \eta_{1}\right)}{f_{X}\left(x ; \eta_{2}\right)}=\left(\eta_{1}-\eta_{2}\right) t_{0}-\left(\eta_{1} t_{0}-\eta_{2} t_{0}\right)=0
$$

also, for any η_{1} and η_{2}. Hence we can conclude that the EF model is identifiable

$$
f_{X}\left(x ; \eta_{1}\right)=f_{X}\left(x ; \eta_{2}\right) \quad \Longleftrightarrow \quad \eta_{1}=\eta_{2}
$$

unless $T(X)$ has a degenerate distribution (for a value $\eta_{0} \in \mathcal{H}$).
3. We have

$$
f_{X}(x ; \psi, \gamma)=\mathbb{1}_{(0, \infty)}(x) \sqrt{\frac{1}{2 \pi \gamma x^{3}}} \exp \left\{-\frac{1}{2} \psi^{2} \gamma x+\psi-\frac{1}{2 \gamma x}\right\}
$$

for $\psi, \gamma>0$ and
(a) This is NOT a location-scale family. For the family to be a location-scale family, we must be able to make a transform of the form

$$
Z=\frac{X-\mu}{\sigma}
$$

with the result that the distribution of Z does not depend on any parameters. The presence of the $1 / x$ term renders the required linear transformation impossible.
(b) This IS an Exponential Family distribution; we may write the transparent parameterization

$$
f_{X}(x ; \psi, \gamma)=h(x) \exp \left\{\left(c_{1}\left(\theta_{1}\right), c_{2}\left(\theta_{2}\right)\binom{T_{1}(x)}{T_{2}(x)}-A(\theta)\right\}\right.
$$

where

- $h(x)=\mathbb{1}_{(0, \infty)}(x) x^{-3 / 2}(2 \pi)^{-1 / 2}$
- $T_{1}(x)=x, T_{2}(x)=1 / x$.
- $c_{1}(\theta)=-\frac{1}{2} \psi^{2} \gamma$ and $c_{2}(\theta)=-\frac{1}{2 \gamma}$.
- $A(\theta)=-\psi+\frac{1}{2} \log \gamma$.
(c) Using the score result,we see that

$$
\mathbb{E}_{X}\left[\frac{\partial c_{1}(\theta)}{\partial \psi} X+\frac{\partial c_{2}(\theta)}{\partial \psi} \frac{1}{X}\right]=\frac{\partial A(\theta)}{\partial \psi}
$$

and

$$
\mathbb{E}_{X}\left[\frac{\partial c_{1}(\theta)}{\partial \gamma} X+\frac{\partial c_{2}(\theta)}{\partial \gamma} \frac{1}{X}\right]=\frac{\partial A(\theta)}{\partial \gamma}
$$

or equivalently

$$
\mathbb{E}_{X}\left[-\psi \gamma X+0 \frac{1}{X}\right]=-1 \quad \therefore \quad \mathbb{E}_{X}[X]=\frac{1}{\psi \gamma}
$$

and

$$
\mathbb{E}_{X}\left[-\frac{1}{2} \psi^{2} X+\frac{1}{2 \gamma^{2}} \frac{1}{X}\right]=\frac{1}{2 \gamma} \quad \therefore \quad \mathbb{E}_{X}\left[\frac{1}{X}\right]=\gamma+\psi \gamma
$$

Note that we may further rewrite the density

$$
f_{X}\left(x ; \phi_{1}, \phi_{2}\right)=\mathbb{1}_{(0, \infty)}(x) \sqrt{\frac{\phi_{1}}{2 \pi x^{3}}} \exp \left\{-\frac{\phi_{1}}{2} \frac{\left(x-\phi_{2}\right)^{2}}{\phi_{2}^{2} x}\right\}
$$

where

$$
\phi_{1}=\frac{1}{\gamma} \quad \phi_{2}=\frac{1}{\psi \gamma}
$$

rendering

$$
\mathbb{E}_{X}[X]=\phi_{2} \quad \mathbb{E}_{X}\left[\frac{1}{X}\right]=\frac{1}{\phi_{1}}+\frac{1}{\phi_{2}}
$$

