
MATH 556 - EXERCISES 4: SOLUTIONS

1. Convolution method: By direct calculation, we have by the theorem of total probability for y ≥ 2,

fY (y) = PY [Y = y] =
∞∑

x1=1

PX1,X2 [X1 = x1, X2 = y − x1] =

y−1∑
x1=1

PX1 [X1 = x1]PX2 [X2 = y − x1]

by independence. Thus for θ1 ≠ θ2,

fY (y) =

y−1∑
x1=1

(1− θ1)
x1−1θ1(1− θ2)

y−x1−1θ2 =
θ1θ2(1− θ2)

y

(1− θ1)(1− θ2)

y−1∑
x1=1

(
1− θ1
1− θ2

)x1

=
θ1θ2(1− θ2)

y

(1− θ1)(1− θ2)

(
1− θ1
1− θ2

) 1−
(
1− θ1
1− θ2

)y−1

1−
(
1− θ1
1− θ2

)

= θ1θ2(1− θ2)
y−2

1−
(
1− θ1
1− θ2

)y−1

1−
(
1− θ1
1− θ2

) =
θ1θ2

θ1 − θ2

[
(1− θ2)

y−1 − (1− θ1)
y−1

]

If θ1 = θ2 = θ, say, then for y ≥ 2

fY (y) =

y−1∑
x1=1

PX1 [X1 = x1]PX2 [X2 = y − x1] =

y−1∑
x1=1

(1− θ)x1−1θ(1− θ)y−x1−1θ = (y − 1)θ2(1− θ)y−2

and Y ∼ NegativeBinom(2, θ).

Generating function method: Alternately, we may use probability generating functions (pgfs): the pgf
is defined for some h > 0 as

GX(t) =
∞∑
x=0

txfX(x) t ∈ (1− h, 1 + h)

(that is, the generating function for the probabilities) so that

GX(t) = EX [tX ] = EX [exp{X log t}] = MX(log t) t ∈ (1− h, 1 + h).

As for mgfs, we have that

GY (t) = GX1(t)GX2(t) =
θ1t

1− t(1− θ1)

θ2t

1− t(1− θ2)

which, on expansion as a power series in t, yields the same summation as above. If θ1 = θ2 = θ,
then

GY (t) = GX1(t)GX2(t) =
θt

1− t(1− θ)

θt

1− t(1− θ)
=

(
θt

1− t(1− θ)

)2

and again we recognize that Y ∼ NegativeBinom(2, θ).
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2. By inspection, we have for (x1, x2) ∈ R2

fX1,X2(x1, x2) = c exp {−|x1|} |x1| exp
{
−x21x

2
2

2

}
= fX1(x1)fX2|X1

(x2|x1)

where

fX1(x1) =

{ 1

2
e−|x1| x1 ∈ R\{0}
0 x1 = 0

fX2|X1
(x2|x1) =


(
x21
2π

)1/2

exp

{
−x21x

2
2

2

}
x2 ∈ R if x1 ̸= 0

0 x2 ∈ R if x1 = 0

Thus c = 1/
√
8π.

3. We have fR(r) = 6r(1− r), for 0 < r < 1, and hence

FR(r) = r2(3− 2r) 0 < r < 1

with the usual cdf behaviour outside of this range.

• Circumference: X1 = 2πR, so X1 = (0, 2π), and from first principles, for x1 ∈ X1,

FX1(x1) = PX1 [ X1 ≤ x1 ] = PR[ 2πR ≤ x1 ] = PR[ R ≤ x1/2π ] = FR(x1/2π) =
3x21
4π2

− 2x31
8π3

=⇒ fX1(x1) =
6x1
8π3

(2π − x1) 0 < x1 < 2π

• Area: X2 = πR2, so X2 = (0, π), and from first principles, for x2 ∈ X2, recalling that fR is only
positive when 0 < x2 < π,

FX2(x2) = PX2 [ X2 ≤ x2 ] = PR[ πR
2 ≤ x2 ] = PR[ R ≤

√
x2/π ] = FR(x2/2π) =

3x2
π

− 2
{x2
π

}3/2

=⇒ fX2(x2) = 3π−3/2(
√
π −

√
x2) 0 < x2 < π.

Finally, for the joint distribution, we have that X2 = πR2 = π(X1/(2π))
2 = X2

1/(4π) so the joint pdf
is degenerate along the line x2 = x21/(4π), that is

fX1,X2(x1, x2) = fX1(x1)fX2|X1
(x2|x1) = 1(0,2π)(x1)

6x1
8π3

(2π − x1)1{x2
1/(4π)}(x2)

4. If X(2)=(0, 1)× (0, 1) is the (joint) range of vector random variable (X,Y ). We have

fX,Y (x, y) = cx(1− y) 0 < x < 1, 0 < y < 1

so that fX,Y (x, y) = fX(x)fY (y) and X(2) = X × Y, where X and Y are the supports of X and Y
respectively, and

fX(x) = c1x and fY (y) = c2(1− y) (1)

for some constants satisfying c1c2 = c. Hence, the two sufficient conditions for independence (that
the joint pdf factorizes into a function of one variable and a function of the other, and the support is
a Cartesian product) are satisfied in (1), and X and Y are independent.
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Secondly, we must have∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dxdy = 1 ∴ c−1 =

∫ 1

0

∫ 1

0
x(1− y) dxdy = 1

and as ∫ 1

0

∫ 1

0
x(1− y) dxdy =

{∫ 1

0
x dx

}{∫ 1

0
(1− y) dy

}
=

1

2
× 1

2
=

1

4

we have c = 4.

Finally, we have A = {(x, y) : 0 < x < y < 1}, and hence, recalling that the joint density is only
non-zero when x < y, we first fix a y and integrate dx on the range (0, y), and then integrate dy on
the range (0, 1), that is

PX,Y [ X < Y ] =

∫∫
A

fX,Y (x, y) dxdy =

∫ 1

0

{∫ y

0
4x(1− y) dx

}
dy

=

∫ 1

0

{∫ y

0
x dx

}
4(1− y) dy =

∫ 1

0
2y2(1− y) dy =

[
2

3
y3 − 1

2
y4
]1
0

=
1

6

5. First sketch the support of the density; this will make it clear that the boundaries of the support are
different for 0 < y ≤ 1 and y > 1.
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In this figure

• the gray shaded region is the support of the joint pdf;
• the solid red line indicates the range of integration dy for a fixed x; this range is always y = 1/x

to y = x;
• the solid blue line indicates the range of integration dx for a fixed y < 1; this range is always

x = 1/x to x = ∞.
• the dotted blue line indicates the range of integration dx for a fixed y > 1; this range is always

x = y to x = ∞.

(i) The marginal distributions are given by

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy =

∫ x

1/x

1

2x2
y dy =

1

2x2
(log x− log(1/x)) =

log x

x2
1 ≤ x

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx =



∫ ∞

1/y

1

2x2y
dx =

1

2
0 ≤ y ≤ 1

∫ ∞

y

1

2x2y
dx =

1

2y2
1 ≤ y

(ii) Conditionals:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=


1

x2y
1/y ≤ x if 0 ≤ y ≤ 1

y

x2
y ≤ x if 1 ≤ y

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

1

2y log x
1/x ≤ y ≤ x if x ≥ 1

(iii) Marginal expectation of Y ;

EY [ Y ] =

∫ ∞

−∞
yfY (y) dy =

∫ 1

0

y

2
dy +

∫ ∞

1

1

2y
dy = ∞

as the second integral is divergent. The expectation is not finite.

6. (i) We set
U = X/Y

V = − log(XY )
⇐⇒

X = U1/2e−V/2

Y = U−1/2e−V/2

note that, as X and Y lie in (0, 1) we have XY < X/Y and XY < Y/X , giving constraints
e−V < U and e−V < 1/U , so that 0 < e−V < min {U, 1/U}. The Jacobian is

|J(u, v)| =

∣∣∣∣∣∣∣∣∣
u−1/2e−v/2

2
−u1/2e−v/2

2

−u−3/2e−v/2

2
−u−1/2e−v/2

2

∣∣∣∣∣∣∣∣∣ = u−1e−v/2.
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Hence
fU,V (u, v) = u−1e−v/2 0 < e−v < min {u, 1/u} , u > 0

The corresponding marginals are given below: let g(y) = − log(min {u, 1/u}), then

fU (u) =

∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

g(y)

e−v

2u
dv =

[
−e−v

2u

]∞
g(y)

=
min {u, 1/u}

2u
u > 0

fV (v) =

∫ ∞

−∞
fU,V (u, v) du =

∫ ev

e−v

e−v

2u
du =

[
log u

2
e−v

]ev
e−v

= ve−v v > 0

(ii) Now let
V = X + Y

Z = X − Y
⇐⇒

X = (V + Z)/2

Y = (V − Z)/2

and the Jacobian of the transformation is 1/2. The transformed variables take values on the
square A in the (V, Z) plane with corners at (0, 0), (1, 1), (2, 0) and (1,−1) bounded by the lines
z = −v, z = 2− v, z = v and z = v − 2. Then

fV,Z(v, z) =
1

2
(v, z) ∈ A

and zero otherwise (sketch the square A). Hence, integrating in horizontal strips in the (V, Z)
plane,

fZ(z) =

∫ ∞

−∞
fV,Z(v, z) dv =



∫ 2+z

−z

1

2
dv = 1 + z −1 < z ≤ 0

∫ 2−z

z

1

2
dv = 1− z 0 < z < 1

7. (a) Random variable 1B(X) takes values on the set {0, 1}, with

P1B(X)[1B(X) = 1] = PX [X ∈ B] = θB

say, so 1B(X) ∼ Bernoulli(θB), with expectation, from the formula sheet, θB
(b) Let 1B(X) be the scalar indicator random variable associated with the event X ∈ B. Then from

above, we have that
E1B(X)[1B(X)] = PX[X ∈ B]

which indicates that we can construct the approximation

Ê1B(X)[1B(X)] =
1

N

N∑
i=1

1B(xi)

where x1, . . . ,xN are an independent sample from the specified Normal distribution. The
following R code implements this:

library(MASS)

N<-10000

Sigma<-matrix(c(1,0.2,-0.5,0.2,2.0,-0.1,-0.5,-0.1,2.0),3,3,byrow=T)

set.seed(101)

for(irep in 1:5){

X<-mvrnorm(N,mu=c(0,0,0),Sigma)
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IndX<-X[,1]+X[,3]-(X[,1]^2+X[,2]^2) > 0

E<-sum(IndX)/N

print(format(E,nsmall=4))

}

and yields the results

[1] 0.1513
[1] 0.1433
[1] 0.1475
[1] 0.1529
[1] 0.1484

By using a very large N , we can discover that the true value is 0.1468 to four decimal places.
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