
MATH 556 - EXERCISES 1– SOLUTIONS

1. (a) The density must integrate to 1. By elementary calculations∫ ∞

−∞
exp{−λ|x− θ|} dx =

∫ ∞

−∞
exp{−λ|z|} dz = 2

∫ ∞

0
exp{−λz} dz

first by making the change of variables from x to z = x−θ, and then noting that the resulting
integrand is an integrable even function around zero. Thus the integral equals 2/λ, so we
must have c = λ/2

(b) The cdf takes slightly different forms either side of θ. First, note that the density is symmetric
about θ so we have

FX(x) =


1

2
− 1

2
(1− exp{λ(x− θ)} x ≤ θ

1

2
+

1

2
(1− exp{−λ(x− θ)} x > θ

(c) The quantile function takes slightly different forms either side of p = 1/2. Again by sym-
metry, we have

QX(p) =


θ +

1

λ
log(2p) p ≤ 1/2

θ − 1

λ
log(2(1− p)) p > 1/2

(d) By symmetry, and the fact that the expectation is finite, we conclude that µ = EX [X] = θ;

(e) Changing variables in the integral from x to z = x− θ, we have

VarX [X] =

∫ ∞

−∞
(x− θ)2

λ

2
exp{−λ|x− θ|}dx =

∫ ∞

−∞
z2

λ

2
exp{−λ|z|}dz

and so the variance of X is equal to the variance of Z = X − θ, so using

fZ(z) =
λ

2
exp{−λ|z|} z ∈ R

we have

EZ [Z
2] =

λ

2

∫ 0

−∞
z2 exp{λz} dz +

λ

2

∫ ∞

0
z2 exp{−λz} dz

= λ

∫ ∞

0
z2 exp{−λz} dz = λ

Γ(3)

λ3
=

2

λ2

by the fact that in the integral the integrand is proportional to a Gamma pdf.

2. Recall that the quantile function is defined by

QX(p) = inf{x : FX(x) ≥ p} 0 < p < 1

so to find QX(p), we need to find the smallest x such that FX(x) ≥ p. If the cdf is (absolutely)
continuous and strictly monotonic, we can obtain the quantile function simply by noting that

QX(p) = x ⇐⇒ FX(x) = p.
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(a) We have that
FX(x) = 1− exp{−βxα} x > 0

with FX(0) = 0 for x ≤ 0. Therefore, this is strictly monotonic on R+, and by direct calcula-
tion

QX(p) =

{
− 1

β
log(1− p)

}1/α

0 < p < 1

(b) We deduce directly that c = 1/10, and hence that

FX(x) =


0 x < 1

⌊min{x, 10}⌋
10

x ≥ 1
.

Hence
QX(p) = ⌈10p⌉ 0 < p < 1.

(c) This is a ‘mixed-type’ distribution, but by right-continuity at x = 1 we must have

3

4
= 1− c =⇒ c =

1

4
.

and the cdf is depicted in the following figure:
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so therefore

QX(p) =


0 0 < p ≤ 0.5

1 0.5 < p ≤ 0.75

1− log(4(1− p)) 0.75 < p < 1
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3. (a) For y > 0

FY1(y) = PY1 [Y1 ≤ y] = PX [X2 ≤ y] = PY1 [−
√
y ≤ X ≤ √

y] = FX(
√
y)− FX(−√

y)

so therefore by differentiation, for y > 0

fY1(y) =
1

2
√
y
fX(

√
y) +

1

2
√
y
fX(−√

y) =
1
√
y
fX(

√
y)

as fX(.) is symmetric around zero. That is

fY1(y) =
1√
2πy

exp
{
−y

2

}
y > 0

and zero otherwise.
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(b) For y > 0

FY2(y) = PY2 [Y2 ≤ y] = PX [|X| ≤ y] = PY2 [−y ≤ X ≤ y] = FX(y)− FX(−y)

so therefore by differentiation, for y > 0

fY2(y) = fX(y) + fX(−y) = 2fX(y)

as fX(.) is symmetric around zero. That is

fY2(y) =
2√
2π

exp

{
−y2

2

}
y > 0

and zero otherwise.
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(c) We have

FY3(y) = PY3 [Y3 ≤ y] = PX [2X −X2 ≤ y]

= PX [X2 − 2X + y ≥ 0]

= PX [(X − a1(y))(X − a2(y)) ≥ 0]

say, where

(a1(y), a2(y)) =
2±

√
4(1− y)

2
= 1±

√
1− y

provided y ≤ 1; if y > 1, PX [X2 − 2X + y ≥ 0] = 1. Thus for y < 1,

FY3(y) = PX [X ≤ a1(y)] + PX [X ≥ a2(y)] = FX(a1(y)) + 1− FX(a2(y))

and hence
fY3(y) =

1

2
√
1− y

fX(1−
√
1− y) +

1

2
√
1− y

fX(1 +
√
1− y)

(d) The function FX(.) maps onto (0, 1), so for 0 < y < 1

FY4(y) = PY4 [Y4 ≤ y] = PX [FX(X) ≤ y] = PX [X ≤ F−1
X (y)] = FX(F−1

X (y)) = y

so therefore
fY4(y) = 1 0 < y < 1

and zero otherwise.

4. The cdf of the Pareto(θ, α) distribution is

FX(x) = 1−
(

θ

θ + x

)α

x > 0
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with FX(x) = 0 for x ≤ 0. This is strictly increasing on R+, and so the quantile function can be
computed as

QX(p) = θ({(1− p)}−1/α − 1)

Now, recall question 3. (d); this says result implies that if X has strictly increasing cdf FX , then
the transformed variable U = FX(X) has a distribution that is uniform on (0,1) – we write U ∼
Uniform(0, 1). But if FX is strictly increasing, then the inverse function F−1

X is well-defined
and corresponds precisely to the quantile function. Consequently, we must have that if U ∼
Uniform(0, 1), then the transformed random variable X = F−1

X (U) has cdf FX .

Therefore, consider setting

X = θ({(1− (1− exp{−Z}))}−1/α − 1)

or
X = θ(exp{Z/α} − 1)

as we require

PZ [g(Z) ≤ x] = 1−
(

θ

θ + x

)α

for x > 0, but
PZ [g(Z) ≤ x] ≡ PZ [Z ≤ g−1(x)] = 1− exp{−g−1(x)}

dictates that

exp{−g−1(x)} =

(
θ

θ + x

)α

or
g−1(x) = −α log θ + α log(θ + x)

which yields the solution.

MATH 556 Exercises 1: Solutions Page 5 of 6



5. We have

EY [Y ] ≡ EX [{FX(X)}k] =
∫ ∞

−∞
{FX(x)}kfX(x) dx =

[
1

k + 1
{FX(x)}k+1

]∞
−∞

=
1

k + 1
.

where the penultimate step follows as fX(x) = dFX(x)/dx, and the final step follows by proper-
ties of the cdf that FX(−∞) = 0 and FX(∞) = 1.

6. For joint density defined on the unit cube (0, 1)3.

fX1,X2,X3(x1, x2, x3) = c(1− sin(2πx1) sin(2πx2) sin(2πx3))

and zero otherwise, for some constant c.

(a) We have for 0 < x1, x2 < 1

fX1,X2(x1, x2) =

∫ 1

0
c(1− sin(2πx1) sin(2πx2) sin(2πx3)) dx3

= c− c sin(2πx1) sin(2πx2)

∫ 1

0
sin(2πx3) dx3

= c

with the joint pdf for (X1, X2) zero elsewhere. The joint pdf must integrate to 1, and thus
c = 1, and by direct calculation

fX1(x1) = 1 0 < x1 < 1

with the same result for X2, so X1 and X2 are marginally uniform. As

fX1,X2(x1, x2) = fX1(x1)fX2(x2) = 1 (x1, x2) ∈ (0, 1)× (0, 1)

and
fX1,X2(x1, x2) = fX1(x1)fX2(x2) = 0 (x1, x2) /∈ (0, 1)× (0, 1)

X1 and X2 are independent.

(b) (X1, X2, X3) are not independent as the joint pdf does not factorize into the product of
marginals, which is a necessary condition for independence. We can see this, as the function

(1− sin(2πx1) sin(2πx2) sin(2πx3))

does not factorize.
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