MATH 556 - Exercises 1- Solutions

1. (a) The density must integrate to 1 . By elementary calculations

$$
\int_{-\infty}^{\infty} \exp \{-\lambda|x-\theta|\} d x=\int_{-\infty}^{\infty} \exp \{-\lambda|z|\} d z=2 \int_{0}^{\infty} \exp \{-\lambda z\} d z
$$

first by making the change of variables from x to $z=x-\theta$, and then noting that the resulting integrand is an integrable even function around zero. Thus the integral equals $2 / \lambda$, so we must have $c=\lambda / 2$
(b) The cdf takes slightly different forms either side of θ. First, note that the density is symmetric about θ so we have

$$
F_{X}(x)= \begin{cases}\frac{1}{2}-\frac{1}{2}(1-\exp \{\lambda(x-\theta)\} & x \leq \theta \\ \frac{1}{2}+\frac{1}{2}(1-\exp \{-\lambda(x-\theta)\} & x>\theta\end{cases}
$$

(c) The quantile function takes slightly different forms either side of $p=1 / 2$. Again by symmetry, we have

$$
Q_{X}(p)= \begin{cases}\theta+\frac{1}{\lambda} \log (2 p) & p \leq 1 / 2 \\ \theta-\frac{1}{\lambda} \log (2(1-p)) & p>1 / 2\end{cases}
$$

(d) By symmetry, and the fact that the expectation is finite, we conclude that $\mu=\mathbb{E}_{X}[X]=\theta$;
(e) Changing variables in the integral from x to $z=x-\theta$, we have

$$
\operatorname{Var}_{X}[X]=\int_{-\infty}^{\infty}(x-\theta)^{2} \frac{\lambda}{2} \exp \{-\lambda|x-\theta|\} d x=\int_{-\infty}^{\infty} z^{2} \frac{\lambda}{2} \exp \{-\lambda|z|\} d z
$$

and so the variance of X is equal to the variance of $Z=X-\theta$, so using

$$
f_{Z}(z)=\frac{\lambda}{2} \exp \{-\lambda|z|\} \quad z \in \mathbb{R}
$$

we have

$$
\begin{aligned}
\mathbb{E}_{Z}\left[Z^{2}\right] & =\frac{\lambda}{2} \int_{-\infty}^{0} z^{2} \exp \{\lambda z\} \mathrm{d} z+\frac{\lambda}{2} \int_{0}^{\infty} z^{2} \exp \{-\lambda z\} \mathrm{d} z \\
& =\lambda \int_{0}^{\infty} z^{2} \exp \{-\lambda z\} \mathrm{d} z=\lambda \frac{\Gamma(3)}{\lambda^{3}}=\frac{2}{\lambda^{2}}
\end{aligned}
$$

by the fact that in the integral the integrand is proportional to a Gamma pdf.
2. Recall that the quantile function is defined by

$$
Q_{X}(p)=\inf \left\{x: F_{X}(x) \geq p\right\} \quad 0<p<1
$$

so to find $Q_{X}(p)$, we need to find the smallest x such that $F_{X}(x) \geq p$. If the cdf is (absolutely) continuous and strictly monotonic, we can obtain the quantile function simply by noting that

$$
Q_{X}(p)=x \quad \Longleftrightarrow \quad F_{X}(x)=p
$$

(a) We have that

$$
F_{X}(x)=1-\exp \left\{-\beta x^{\alpha}\right\} \quad x>0
$$

with $F_{X}(0)=0$ for $x \leq 0$. Therefore, this is strictly monotonic on \mathbb{R}^{+}, and by direct calculation

$$
Q_{X}(p)=\left\{-\frac{1}{\beta} \log (1-p)\right\}^{1 / \alpha} \quad 0<p<1
$$

(b) We deduce directly that $c=1 / 10$, and hence that

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<1 \\
\frac{\lfloor\min \{x, 10\}\rfloor}{10} & x \geq 1
\end{array} .\right.
$$

Hence

$$
Q_{X}(p)=\lceil 10 p\rceil \quad 0<p<1 .
$$

(c) This is a 'mixed-type' distribution, but by right-continuity at $x=1$ we must have

$$
\frac{3}{4}=1-c \quad \Longrightarrow \quad c=\frac{1}{4}
$$

and the cdf is depicted in the following figure:

so therefore

$$
Q_{X}(p)=\left\{\begin{array}{cc}
0 & 0<p \leq 0.5 \\
1 & 0.5<p \leq 0.75 \\
1-\log (4(1-p)) & 0.75<p<1
\end{array}\right.
$$

3. (a) For $y>0$

$$
F_{Y_{1}}(y)=P_{Y_{1}}\left[Y_{1} \leq y\right]=P_{X}\left[X^{2} \leq y\right]=P_{Y_{1}}[-\sqrt{y} \leq X \leq \sqrt{y}]=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
$$

so therefore by differentiation, for $y>0$

$$
f_{Y_{1}}(y)=\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})=\frac{1}{\sqrt{y}} f_{X}(\sqrt{y})
$$

as $f_{X}($.$) is symmetric around zero. That is$

$$
f_{Y_{1}}(y)=\frac{1}{\sqrt{2 \pi y}} \exp \left\{-\frac{y}{2}\right\} \quad y>0
$$

and zero otherwise.

(b) For $y>0$

$$
F_{Y_{2}}(y)=P_{Y_{2}}\left[Y_{2} \leq y\right]=P_{X}[|X| \leq y]=P_{Y_{2}}[-y \leq X \leq y]=F_{X}(y)-F_{X}(-y)
$$

so therefore by differentiation, for $y>0$

$$
f_{Y_{2}}(y)=f_{X}(y)+f_{X}(-y)=2 f_{X}(y)
$$

as $f_{X}($.$) is symmetric around zero. That is$

$$
f_{Y_{2}}(y)=\frac{2}{\sqrt{2 \pi}} \exp \left\{-\frac{y^{2}}{2}\right\} \quad y>0
$$

and zero otherwise.

(c) We have

$$
\begin{aligned}
F_{Y_{3}}(y)=P_{Y_{3}}\left[Y_{3} \leq y\right] & =P_{X}\left[2 X-X^{2} \leq y\right] \\
& =P_{X}\left[X^{2}-2 X+y \geq 0\right] \\
& =P_{X}\left[\left(X-a_{1}(y)\right)\left(X-a_{2}(y)\right) \geq 0\right]
\end{aligned}
$$

say, where

$$
\left(a_{1}(y), a_{2}(y)\right)=\frac{2 \pm \sqrt{4(1-y)}}{2}=1 \pm \sqrt{1-y}
$$

provided $y \leq 1$; if $y>1, P_{X}\left[X^{2}-2 X+y \geq 0\right]=1$. Thus for $y<1$,

$$
F_{Y_{3}}(y)=P_{X}\left[X \leq a_{1}(y)\right]+P_{X}\left[X \geq a_{2}(y)\right]=F_{X}\left(a_{1}(y)\right)+1-F_{X}\left(a_{2}(y)\right)
$$

and hence

$$
f_{Y_{3}}(y)=\frac{1}{2 \sqrt{1-y}} f_{X}(1-\sqrt{1-y})+\frac{1}{2 \sqrt{1-y}} f_{X}(1+\sqrt{1-y})
$$

(d) The function F_{X} (.) maps onto $(0,1)$, so for $0<y<1$

$$
F_{Y_{4}}(y)=P_{Y_{4}}\left[Y_{4} \leq y\right]=P_{X}\left[F_{X}(X) \leq y\right]=P_{X}\left[X \leq F_{X}^{-1}(y)\right]=F_{X}\left(F_{X}^{-1}(y)\right)=y
$$

so therefore

$$
f_{Y_{4}}(y)=1 \quad 0<y<1
$$

and zero otherwise.
4. The cdf of the $\operatorname{Pareto}(\theta, \alpha)$ distribution is

$$
F_{X}(x)=1-\left(\frac{\theta}{\theta+x}\right)^{\alpha} \quad x>0
$$

with $F_{X}(x)=0$ for $x \leq 0$. This is strictly increasing on \mathbb{R}^{+}, and so the quantile function can be computed as

$$
Q_{X}(p)=\theta\left(\{(1-p)\}^{-1 / \alpha}-1\right)
$$

Now, recall question 3. (d); this says result implies that if X has strictly increasing cdf F_{X}, then the transformed variable $U=F_{X}(X)$ has a distribution that is uniform on (0,1) - we write $U \sim$ $\operatorname{Uniform}(0,1)$. But if F_{X} is strictly increasing, then the inverse function F_{X}^{-1} is well-defined and corresponds precisely to the quantile function. Consequently, we must have that if $U \sim$ $\operatorname{Uniform}(0,1)$, then the transformed random variable $X=F_{X}^{-1}(U)$ has cdf F_{X}.

Therefore, consider setting

$$
X=\theta\left(\{(1-(1-\exp \{-Z\}))\}^{-1 / \alpha}-1\right)
$$

or

$$
X=\theta(\exp \{Z / \alpha\}-1)
$$

as we require

$$
\mathrm{P}_{Z}[g(Z) \leq x]=1-\left(\frac{\theta}{\theta+x}\right)^{\alpha}
$$

for $x>0$, but

$$
\mathrm{P}_{Z}[g(Z) \leq x] \equiv \mathrm{P}_{Z}\left[Z \leq g^{-1}(x)\right]=1-\exp \left\{-g^{-1}(x)\right\}
$$

dictates that

$$
\exp \left\{-g^{-1}(x)\right\}=\left(\frac{\theta}{\theta+x}\right)^{\alpha}
$$

or

$$
g^{-1}(x)=-\alpha \log \theta+\alpha \log (\theta+x)
$$

which yields the solution.
5. We have

$$
\mathbb{E}_{Y}[Y] \equiv \mathbb{E}_{X}\left[\left\{F_{X}(X)\right\}^{k}\right]=\int_{-\infty}^{\infty}\left\{F_{X}(x)\right\}^{k} f_{X}(x) d x=\left[\frac{1}{k+1}\left\{F_{X}(x)\right\}^{k+1}\right]_{-\infty}^{\infty}=\frac{1}{k+1} .
$$

where the penultimate step follows as $f_{X}(x)=d F_{X}(x) / d x$, and the final step follows by properties of the cdf that $F_{X}(-\infty)=0$ and $F_{X}(\infty)=1$.
6. For joint density defined on the unit cube $(0,1)^{3}$.

$$
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=c\left(1-\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \sin \left(2 \pi x_{3}\right)\right)
$$

and zero otherwise, for some constant c.
(a) We have for $0<x_{1}, x_{2}<1$

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\int_{0}^{1} c\left(1-\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \sin \left(2 \pi x_{3}\right)\right) \mathrm{d} x_{3} \\
& =c-c \sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \int_{0}^{1} \sin \left(2 \pi x_{3}\right) \mathrm{d} x_{3} \\
& =c
\end{aligned}
$$

with the joint pdf for $\left(X_{1}, X_{2}\right)$ zero elsewhere. The joint pdf must integrate to 1, and thus $c=1$, and by direct calculation

$$
f_{X_{1}}\left(x_{1}\right)=1 \quad 0<x_{1}<1
$$

with the same result for X_{2}, so X_{1} and X_{2} are marginally uniform. As

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)=1 \quad\left(x_{1}, x_{2}\right) \in(0,1) \times(0,1)
$$

and

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)=0 \quad\left(x_{1}, x_{2}\right) \notin(0,1) \times(0,1)
$$

X_{1} and X_{2} are independent.
(b) (X_{1}, X_{2}, X_{3}) are not independent as the joint pdf does not factorize into the product of marginals, which is a necessary condition for independence. We can see this, as the function

$$
\left(1-\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \sin \left(2 \pi x_{3}\right)\right)
$$

does not factorize.

