MATH 556 - FALL 2019
 Mid-Term Examination
 Solutions

1. (a) Not a pmf: function sums to 3. 3 MARKS
(b) Valid pmf: support is finite, and function is bounded on that support, so c is finite.

3 Marks
(c) Valid pdf: function is integrable on \mathbb{R} as $\Phi(x)$ is bounded, and function is positive on \mathbb{R}.

3 Marks
(d) Not a cdf: we have $\lim _{x \rightarrow \infty} F(x)=\frac{1}{2}<1$.

3 Marks
(e) Valid cdf with $c_{1}=c_{2}=1 / \sqrt{2}$: function satisfies the three conditions (limit conditions, non-decreasing, right-continuous, even at $x=1$, where $F(x)=1 / \sqrt{2})$.

3 Marks
2. (a) We have that for $y \in \mathbb{R}$

$$
f_{Y}(y)=\sum_{x=0}^{1} f_{Y \mid X}(y \mid x) f_{X}(x)=\phi(y+1)(1-\theta)+\phi(y-1) \theta
$$

where $\phi(x)$ is the standard Normal pdf.
3 Marks
For the expectation, by direct calculation

$$
\mathbb{E}_{Y}[Y]=\int_{-\infty}^{\infty} y(\phi(y+1)(1-\theta)+\phi(y-1) \theta) d y
$$

and by standard properties of integrals we have

$$
\mathbb{E}_{Y}[Y]=(1-\theta) \int_{-\infty}^{\infty} y \phi(y+1) d y+\theta \int_{-\infty}^{\infty} y \phi(y-1) d y
$$

which, by changing variables in the integrals, we can rewrite as

$$
\left.\mathbb{E}_{Y}[Y]=(1-\theta) \int_{-\infty}^{\infty}(z-1) \phi(z) d z+\theta \int_{-\infty}^{\infty}(z+1) \phi(z)\right) d z
$$

Then by properties of the standard Normal, we have

$$
\mathbb{E}_{Y}[Y]=((1-\theta) \times(-1))+(\theta \times 1)=2 \theta-1 .
$$

Similarly

$$
\begin{aligned}
\mathbb{E}_{Y}\left[Y^{2}\right] & =(1-\theta) \int_{-\infty}^{\infty} y^{2} \phi(y+1) d y+\theta \int_{-\infty}^{\infty} y^{2} \phi(y-1) d y \\
& =(1-\theta) \int_{-\infty}^{\infty}(z-1)^{2} \phi(z) d z+\theta \int_{-\infty}^{\infty}(z+1)^{2} \phi(z) d z \\
& =\mathbb{E}_{Z}\left[Z^{2}\right]+(2 \theta-1) \mathbb{E}_{Z}[Z]+1
\end{aligned}
$$

where $Z \sim \operatorname{Normal}(0,1)$. Thus $\mathbb{E}_{Y}\left[Y^{2}\right]=2$, and thus

$$
\operatorname{Var}_{Y}[Y]=\mathbb{E}_{Y}\left[Y^{2}\right]-\left\{\mathbb{E}_{Y}[Y]\right\}^{2}=2-(2 \theta-1)^{2}=1+4 \theta(1-\theta)
$$

Note: we can also use the method of iterated expectation here.
(b) Z can only take values on $\{0,1,2,3\}$ with positive probability. We have

$$
f_{Z}(z)=\left\{\begin{array}{ccc}
(1-\theta)^{2} & z=0 \\
\theta(1-\theta) & z=1 \\
\theta(1-\theta) & z=2 \\
\theta^{2} & z & =3 \\
0 & & \text { otherwise }
\end{array}\right.
$$

3. (a) (i) We have that $Q_{X}(p)=\inf \left\{x: F_{X}(x) \geq p\right\}$, so

$$
Q_{X}(p)=\left\{\begin{array}{rc}
-1 & 0<p \leq 1 / 4 \\
0 & 1 / 4<p \leq 3 / 4 \\
1 & 3 / 4<p<1
\end{array}\right.
$$

5 Marks
(ii) Y can only take values on $\{0,1\}$, and $Y \sim \operatorname{Bernoulli}(1 / 2)$.

2 Marks
(iii) The pmf is symmetric about zero, so $\mathbb{E}_{X}\left[X^{3}\right]=0$.

3 Marks
(b) We have

$$
\log \frac{f_{0}(x)}{f_{1}(x)}=\log \left[\frac{\lambda_{0}^{x} e^{-\lambda_{0}}}{\lambda_{1}^{x} e^{-\lambda_{1}}}\right]=x \log \left(\lambda_{0} / \lambda_{1}\right)-\left(\lambda_{0}-\lambda_{1}\right)
$$

Now, it is evident that the KL divergence is the expectation of this logged quantity under the distribution f_{0}, and as $\mathbb{E}_{f_{0}}[X]=\lambda_{0}$ we have

$$
K L\left(f_{0}, f_{1}\right)=\mathbb{E}_{f_{0}}\left[\log \frac{f_{0}(X)}{f_{1}(X)}\right]=\mathbb{E}_{f_{0}}\left[X \log \left(\lambda_{0} / \lambda_{1}\right)-\left(\lambda_{0}-\lambda_{1}\right)\right]=\lambda_{0} \log \left(\lambda_{0} / \lambda_{1}\right)-\left(\lambda_{0}-\lambda_{1}\right)
$$

5 Marks
4. (a) We have

$$
P_{X_{1}, X_{2}}\left[\frac{X_{1}}{X_{2}}>1\right]=P_{X_{1}, X_{2}}\left[X_{1}>X_{2}\right]=\frac{1}{2} .
$$

as X_{1} and X_{2} are independent and identically distributed.
3 Marks
(b) We have for fixed $y<0$,

$$
P_{Y}[Y \leq y]=P_{X_{1}, X_{2}}\left[X_{1}-X_{2} \leq y\right]=\int_{0}^{\infty} \int_{x_{1}-y}^{\infty} e^{-x_{1}} e^{-x_{2}} d x_{2} d x_{1}
$$

as for $y<0$, the set A_{y} is the region in the positive quadrant above the line $x_{1}-x_{2}=y$. Thus

$$
\begin{aligned}
F_{Y}(y)=\int_{0}^{\infty} e^{-x_{1}}\left\{\int_{x_{1}-y}^{\infty} e^{-x_{2}} d x_{2}\right\} d x_{1} & =\int_{0}^{\infty} e^{-x_{1}} e^{-\left(x_{1}-y\right)} d x_{1} \\
& =e^{y} \int_{0}^{\infty} e^{-2 x_{1}} d x_{1}=\frac{1}{2} e^{y}
\end{aligned}
$$

For $y>0$, note that

$$
P_{Y}[Y \geq y]=P_{Y}[-Y \leq-y]=P_{X_{1}, X_{2}}\left[X_{2}-X_{1} \leq-y\right]
$$

but by symmetry of form, $X_{2}-X_{1}$ has the same distribution as $X_{1}-X_{2}$. Thus for $y>0$

$$
F_{Y}(y)=1-P_{Y}[Y \geq y]=1-F_{Y}(-y)=1-\frac{1}{2} e^{-y}
$$

and hence we have on differentiation (separately for $y>0$ and $y<0$) that

$$
f_{Y}(y)=\frac{1}{2} e^{-|y|} \quad y \in \mathbb{R} .
$$

This is the Double Exponential (or Laplace) distribution.
12 Marks

