
MATH 556 - EXERCISES 7

Not for Assessment.

1. Let Yn and Zn correspond to the maximum and minimum order statistics derived from an indepen-
dent sample X1, . . . , Xn from population with cdf FX .

(a) Suppose X1, . . . , Xn ∼ Uniform(0, 1). Find the cdfs of Yn and Zn, and the limiting distribu-
tions as n −→ ∞.

(b) Suppose X1, . . . , Xn have cdf

FX(x) =
1

1 + e−x
x ∈ R

Find the cdfs of Yn and Un = Yn− log n and the limiting distributions of Yn and Un as n −→ ∞.

(c) Suppose X1, . . . , Xn have cdf

FX(x) = 1− 1

1 + 2x
x > 0

Find the cdfs of Yn and Zn, and the limiting distributions as n −→ ∞. Find also the cdfs of
Un = Yn/n and Vn = nZn, and the limiting distributions of Un and Vn as n −→ ∞.

2. Using the Central Limit Theorem, construct Normal approximations to probability distribution of
a random variable X having

(a) a Binomial distribution, X ∼ Binomial(n, θ)

(b) a Poisson distribution, X ∼ Poisson(λ)

(c) a Negative Binomial distribution, X ∼ NegBinomial(n, θ)

(d) a Gamma distribution, X ∼ Gamma(α, β)

3. Suppose X1, . . . , Xn ∼ Poisson(λ) are independent random variables. Let Mn = Xn. Show that
Mn

p−→ λ as n −→ ∞. If random variable Tn is defined by Tn = e−Mn , show that Tn
p−→ e−λ, and

find an approximation to the probability distribution of Tn as n −→ ∞.

4. For the following sequences of random variables, {Xn}, decide whether the the sequence converges
in mean-square (rth mean for r = 2) or in probability as n −→ ∞.

(a) Xn =

{
1 with prob. 1/n

2 with prob. 1− 1/n

(b) Xn =

{
n2 with prob. 1/n

1 with prob. 1− 1/n

(c) Xn =

{
n with prob. 1/ log n

0 with prob. 1− 1/ log n
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ADVANCED MATERIAL: ALMOST SURE CONVERGENCE AND THE BOREL-CANTELLI LEMMA.

Let {En} be a sequence of events in sample space Ω. Then

E(S) =
∞∩
n=1

∞∪
m=n

Em

is the limsup event of the infinite sequence; event E(S) occurs if and only if

• for all n ≥ 1, there exists an m ≥ n such that Em occurs, or equivalently
• infinitely many of the En occur.

Similarly, let

E(I) =

∞∪
n=1

∞∩
m=n

Em

is the liminf event of the infinite sequence; event E(I) occurs if and only if

• there exists n ≥ 1, such that for all m ≥ n, Em occurs, or equivalently
• only finitely many of the En do not occur.

The Borel-Cantelli Lemma: Let {En} be a sequence of events in sample space Ω. Then

(i) If
∞∑
n=1

P (En) < ∞, =⇒ P
(
E(S)

)
= 0,

that is,
P [En occurs infinitely often ] = 0.

(ii) If the events {En} are independent

∞∑
n=1

P (En) = ∞ =⇒ P
(
E(S)

)
= 1.

that is, P [ En occurs infinitely often ] = 1.

Note: This result is useful for assessing almost sure convergence. For a sequence of random variables
{Xn} and limit random variable X , suppose, for ϵ > 0, that An(ϵ) is the event

An(ϵ) ≡ {ω : |Xn(ω)−X(ω)| ≥ ϵ}

The Borel-Cantelli Lemma says that for arbitrary ϵ > 0,

(i) if
∞∑
n=1

P (An(ϵ)) =
∞∑
n=1

P [ |Xn −X| ≥ ϵ ] < ∞

then
Xn

a.s.−→ X

(ii) if
∞∑
n=1

P (An(ϵ)) =

∞∑
n=1

P [ |Xn −X| ≥ ϵ ] = ∞

with the Xn independent then
Xn

a.s.−→ X
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Proof

(i) Note first that
∞∑
n=1

P (En) < ∞ =⇒ lim
n−→∞

∞∑
m=n

P (Em) = 0.

because if the sum on the left-hand side is finite, then the tail-sums on the right-hand side tend
to zero as n −→ ∞. But for every n ≥ 1,

E(S) =

∞∩
n=1

∞∪
m=n

Em ⊆
∞∪

m=n

Em ∴ P
(
E(S)

)
≤ P

( ∞∪
m=n

Em

)
≤

∞∑
m=n

P (Em). (1)

Thus, taking limits as n −→ ∞, we have that

P
(
E(S)

)
≤ lim

n−→∞

∞∑
m=n

P (Em) = 0.

(ii) Consider N ≥ n, and the union of events

En,N =

N∪
m=n

Em.

En,N corresponds to the collection of sample outcomes that are in at least one of the collections
corresponding to events En, ...., EN . Therefore, E′

n,N is the collection of sample outcomes in Ω

that are not in any of the collections corresponding to events En, ...., EN , and hence

E′
n,N =

N∩
m=n

E′
m (2)

Now,

En,N ⊆
∞∪

m=n

Em =⇒ P (En,N ) ≤ P

( ∞∪
m=n

Em

)
and hence, by assumption and independence,

1− P

( ∞∪
m=n

Em

)
≤ 1− P

(
N∪

m=n

Em

)
= 1− P (En,N ) = P

(
E′

n,N

)
= P

(
N∩

m=n

E′
m

)
=

N∏
m=n

P
(
E′

m

)
=

N∏
m=n

(1− P (Em)) ≤ exp

{
−

N∑
m=n

P (Em)

}
,

as 1− x ≤ exp{−x} for 0 < x < 1. Now, taking the limit of both sides as N −→ ∞, for fixed n,

1− P

( ∞∪
m=n

Em

)
≤ lim

N−→∞
exp

{
−

N∑
m=n

P (Em)

}
= 0

as, by assumption
∞∑
n=1

P (En) = ∞. Thus, for each n, we have that

P

( ∞∪
m=n

Em

)
= 1 ∴ lim

n−→∞
P

( ∞∪
m=n

Em

)
= 1.
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But the sequence of events {An} defined for n ≥ 1 by

An =

∞∪
m=n

Em

is monotone non-increasing, and hence, by continuity,

P
(

lim
n−→∞

An

)
= lim

n−→∞
P (An) . (3)

From (4), we have that the right hand side of equation (5) is equal to 1, and, by definition,

lim
n−→∞

An =

∞∩
n=1

An =

∞∩
n=1

∞∪
m=n

Em. (4)

Hence, combining (2), (3) and (4) we have finally that

P

( ∞∩
n=1

∞∪
m=n

Em

)
= 1 =⇒ P

(
E(S)

)
= 1.

Interpretation and Implications

The Borel-Cantelli result is concerned with the calculation of the probability of the limsup event E(S)

occurring for general infinite sequences of events {En}. From previous discussion, we have seen that
E(S) corresponds to the collection of sample outcomes in Ω that are in infinitely many of the En col-
lections. Alternately, E(S) occurs if and only if infinitely many {En} occur. The Borel-Cantelli result
tells us conditions under which P

(
E(S)

)
= 0 or 1.

EXAMPLE : Consider the event E defined by

“E occurs” = “run of 100100 Heads occurs in an infinite sequence of independent coin tosses”

We wish to calculate P (E), and proceed as follows; consider the infinite sequence of events {En}
defined by

“En occurs” = “run of 100100 Heads occurs in the nth block of 100100 coin tosses”

Then {En} are independent events, and

P (En) =
1

2100100
> 0 =⇒

∞∑
n=1

P (En) = ∞,

and hence by part (b) of the Borel-Cantelli result,

P
(
E(S)

)
= P

( ∞∩
n=1

∞∪
m=n

Em

)
= 1

so that the probability that infinitely many of the {En} occur is 1. But, crucially,

E(S) ⊆ E =⇒ P (E) = 1.

Therefore the probability that E occurs, that is that a run of 100100 Heads occurs in an infinite sequence
of independent coin tosses, is 1.
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ADVANCED EXERCISES

1.∗ Consider the sequence of random variables defined for n = 1, 2, 3, . . . by

Xn = 1[0,n−1) (Un)

where U1, U2, . . . are a sequence of independent Uniform(0, 1) random variables, and 1A is the
indicator function for set A

1A (ω) =

{
1 ω ∈ A
0 ω /∈ A

Does the sequence {Xn} converge

(a) almost surely ?

(b) in rth mean for r = 1 ?

Hint: Consider the events An ≡ (Xn ̸= 0) for n = 1, 2, . . ..

2.∗ Let Z ∼ Uniform(0, 1), and define a sequence of random variables {Xn} by

Xn = n1[1−n−1,1)(Z) n = 1, 2, . . .

where, for set A

1A(Z) =

{
1 Z ∈ A

0 Z /∈ A

that is, IA is the indicator random variable associated with the set A.

Does the sequence {Xn} converge in any mode to any limit random variable ? Justify your answer.

3.∗ Suppose, for n = 1, 2, . . ., Xn ∼ Bernoulli(pn) are a sequence of independent random variables
where

P [Xn = 1] = pn =
1√
n
.

Does P [ Xn = 1 infinitely often ] = 1 ? Justify your answer.
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