MATH 556 - EXERCISES 6
 Not for Assessment.

1. Suppose that X_{1}, \ldots, X_{r} are independent random variables such that, for each $i, X_{i} \sim N\left(\mu_{i}, 1\right)$, for fixed constants μ_{1}, \ldots, μ_{r}.
(a) Find the mgf of random variable Y defined by

$$
Y=\sum_{i=1}^{r} X_{i}^{2}
$$

(b) Find the skewness of Y, ς, where

$$
\varsigma=\frac{\mathbb{E}_{Y}\left[(Y-\mu)^{3}\right]}{\sigma^{3}}
$$

where μ and σ^{2} are the expectation and variance of f_{Y}.
2. Consider the three-level hierarchical model:

$$
\begin{array}{ll}
\text { LEVEL } 3: & \lambda>0, r \in\{1,2, \ldots\} \\
\text { LEVEL } 2: & N \sim \operatorname{Poisson}(\lambda) \\
\text { LEVEL } 1: & X \mid N=n \sim \operatorname{Gamma}(n+r / 2,1 / 2)
\end{array}
$$

Find
(a) The expectation of $X, \mathbb{E}_{X}[X]$,
(b) The mgf of $X, M_{X}(t)$.
3. As a generalization of the model considered in lectures, consider the three-level hierarchical model:

$$
\begin{aligned}
& \text { LEVEL } 3: \mu \in \mathbb{R}, \tau, \sigma>0 \quad \text { Fixed parameters } \\
& \text { LEVEL } 2: \quad M \sim \operatorname{Normal}\left(\mu, \tau^{2}\right) \\
& \text { LEVEL 1: } \quad X_{1}, X_{2} \mid M=m \sim \operatorname{Normal}\left(m, \sigma^{2}\right)
\end{aligned}
$$

where X_{1} and X_{2} are conditionally independent given M, denoted

$$
X_{1} \perp X_{2} \mid M
$$

Using the law of iterated expectation, find the (marginal) covariance and correlation between X_{1} and X_{2}. Are X_{1} and X_{2} (marginally) independent? Justify your answer.

