MATH 556 - EXERCISES 4

Not for Assessment.

1. Suppose that $X_{1} \sim \operatorname{Geometric}\left(\theta_{1}\right)$ and $X_{2} \sim \operatorname{Geometric}\left(\theta_{2}\right)$ are independent random variables. Find the pmf of random variable Y where $Y=X_{1}+X_{2}$.
2. Suppose that X_{1} and X_{2} are random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c\left|x_{1}\right| \exp \left\{-\left|x_{1}\right|-\frac{x_{1}^{2} x_{2}^{2}}{2}\right\} \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Find the marginal pdf of X_{1}, and the conditional pdf of X_{2} given $X_{1}=x_{1}$, for appropriate values of x_{1}. Take care to define the pdfs for all real values of their arguments. Compute the value of constant c
3. The radius of a circle, R, is a continuous random variable with density function given by

$$
f_{R}(r)=6 r(1-r) \quad 0<r<1
$$

and zero otherwise. Find the joint and marginal pdfs of X_{1}, the circumference of the circle, and X_{2}, the area of the circle.
4. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

and zero otherwise for some constant c. Are X and Y independent random variables?
Find the value of c, and, for the set $A \equiv\{(x, y): 0<x<y<1\}$, the probability

$$
P_{X, Y}[X<Y]=\iint_{A} f_{X, Y}(x, y) d x d y
$$

5. Suppose that X and Y are continuous random variables with joint pdf given by

$$
f_{X, Y}(x, y)=\frac{1}{2 x^{2} y} \quad 1 \leq x<\infty, 1 / x \leq y \leq x
$$

and zero otherwise. Derive
(i) the marginal pdfs of X and Y
(ii) the conditional pdf of X given $Y=y$, and the conditional pdf of Y given $X=x$.
(iii) the expectation of $Y, \mathbb{E}_{Y}[Y]$.
6. Suppose that X and Y have joint pdf that is constant with support $\mathbb{X}^{(2)} \equiv(0,1) \times(0,1)$.
(i) Find the marginal pdf of random variables $U=X / Y$ and $V=-\log (X Y)$, stating clearly the range of the transformed random variable in each case.
(ii) Find the pdf and cdf of $Z=X-Y$.
7. (a) Consider random variable X with probability function P_{X} and cdf F_{X}. The indicator random variable for set $B, \mathbb{1}_{B}($.$) , is a transformation of X$, and is defined by

$$
\mathbb{1}_{B}(X)= \begin{cases}1 & X \in B \\ 0 & X \notin B\end{cases}
$$

Find the $\mathrm{pmf} / \mathrm{pdf}$ and the expectation of $\mathrm{rv} \mathbb{1}_{B}(X)$.
(b) The expectation of any random variable with $\mathrm{pmf} / \mathrm{pdf} f_{X}$ can be approximated to arbitrary accuracy (under mild conditions) by a Monte Carlo simulation procedure: a large sample of simulated values x_{1}, \ldots, x_{N} are generated from f_{X}, and then the expectation is approximated by the sample mean to produce the approximation $\widehat{\mathbb{E}}_{X}[X]$.

$$
\widehat{\mathbb{E}}_{X}[X]=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Using the result in (a), and a Monte Carlo procedure, to approximate the probability

$$
P_{\mathbf{X}}[\mathbf{X} \in B]
$$

if \mathbf{X} has a three-dimensional multivariate Normal distribution, $\mathbf{X} \sim \operatorname{Normal}_{3}(\mathbf{0}, \Sigma)$, with

$$
\Sigma=\left[\begin{array}{rrr}
1.0 & 0.2 & -0.5 \\
0.2 & 2.0 & -0.1 \\
-0.5 & -0.1 & 2.0
\end{array}\right]
$$

and B is the set $\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2} \leq x_{1}+x_{3}\right\}$. Tabulate the results of five replicate Monte Carlo runs with $N=10000$.
R functions for simulating the multivariate Normal distribution include mvrnorm from the MASS library and rmvn from the mvnf ast library. Note also that if Z_{1}, \ldots, Z_{n} are independent standard Normal variables, and \mathbf{L} is an $n \times n$ matrix, then

$$
\mathbf{Y}=\mathbf{L Z} \sim \operatorname{Normal}\left(0, \mathbf{L L}^{\top}\right)
$$

Therefore if \mathbf{L} is the lower-triangular matrix termed the Cholesky factor for Σ, defined by

$$
\mathbf{L} \mathbf{L}^{\top}=\Sigma
$$

then we can generate \mathbf{X} as $\mathbf{L Z}$. The Cholesky factor can be computed in R using the function chol.

```
Sigma<-matrix(c(1,0.2,-0.5,0.2,2,-0.1,-0.5,-0.1,2.0),3,3)
library(mvnfast)
N<-10000
X<-rmvn(N,mu=c(0,0,0),Sigma)
cov(X) #computes the sample covariance matrix for X
Z<-matrix(rnorm(N*3), nrow=N,ncol=3)
L<-t(chol(Sigma)) #chol produces the transpose of L
X<-t(L %*% t(Z))
cov(X)
```

