MATH 556 - EXERCISES 3

Not for Assessment.

1. Suppose X is a random variable, with $\operatorname{mgf} M_{X}(t)$ defined on $(-h, h)$ for some $h>$. Show that

$$
P_{X}[X \geq a] \leq e^{-a t} M_{X}(t) \quad \text { for } 0<t<\delta
$$

For the cumulant generating function $K_{X}(t)=\log M_{X}(t)$, verify that

$$
\frac{d}{d t}\left\{K_{X}(t)\right\}_{t=0}=\mathbb{E}_{X}[X] \quad \frac{d^{2}}{d t^{2}}\left\{K_{X}(t)\right\}_{t=0}=\operatorname{Var}_{X}[X]
$$

2. The non-central chi-square distribution arises as the distribution of the square of a normal random variable. That is, if $X \sim \operatorname{Normal}(\mu, 1)$, then $Y=X^{2}$ has the non-central chi-square distribution with one degree of freedom and non-centrality parameter λ, denoted $Y \sim \chi_{\nu}^{2}(\lambda)$, where $\nu=1$ and $\lambda=\mu^{2}$. In this setting,
(a) Find the pdf of Y, and show that it can be expressed in the form

$$
f_{Y}(y)=e^{-\lambda / 2} \sum_{j=0}^{\infty} \frac{(\lambda / 2)^{j}}{j!} f_{Z_{2 j+k}}(y) \quad y>0
$$

where $f_{Z_{m}}$ is the pdf of a random variable Z_{m} which has a chi-square distribution with m degrees of freedom (that is, $Z_{m} \sim \operatorname{Gamma}(m / 2,1 / 2)$).
(b) Find the characteristic function $\varphi_{Y}(t)$.
(c) Find the Laplace transform $\mathcal{L}_{Y}(t)$, defined for $t \geq 0$ by

$$
\mathcal{L}_{Y}(t)=\int_{0}^{\infty} e^{-t y} d F_{Y}(y)=\mathbb{E}_{Y}\left[e^{-t Y}\right] .
$$

Note that $\mathcal{L}_{Y}(t)$ is well-defined provided $Y \geq 0$ with probability 1 .
(d) Find the expectation and variance of Y.
(e) Find the distribution of

$$
S=\sum_{i=1}^{n} Y_{i}
$$

where Y_{1}, \ldots, Y_{n} are independent, with $Y_{i} \sim \chi_{\nu_{i}}^{2}\left(\lambda_{i}\right), i=1, \ldots, n$.
3. If $\mathcal{L}_{X}(t)$ is the Laplace transform (see question above) of a nonnegative random variable X, show that for $r=1,2, \ldots$

$$
(-1)^{r} \frac{d^{r}}{d t^{r}}\left\{\mathcal{L}_{\mathcal{X}}(t)\right\} \geq 0 \quad t \geq 0 .
$$

If F_{X} is the corresponding cdf, show that

$$
\mathcal{L}_{X}(t)=t \int_{0}^{\infty} \exp \{-t x\} F_{X}(x) d x
$$

4. Suppose that $X_{1} \sim \operatorname{Gamma}\left(\alpha_{1}, \beta_{1}\right)$ and $X_{2} \sim \operatorname{Gamma}\left(\alpha_{2}, \beta_{2}\right)$ are independent random variables. Characterize the distribution of $Y=X_{1}-X_{2}$.
5. Suppose that $\left\{\varphi_{k}(t)\right\}_{k=1}^{n}$ is a sequence of characteristic functions, and $\left\{c_{k}\right\}_{k=1}^{n}$ is a sequence of nonnegative real valued constants, with

$$
\sum_{k=1}^{n} c_{k}=1
$$

Show that

$$
\sum_{k=1}^{n} c_{k} \varphi_{k}(t)
$$

is also a characteristic function, and identify the distribution to which it corresponds. Does the result extend to the case where $n \longrightarrow \infty$? Justify your answer.
6. If

$$
\varphi_{1}(t)=\exp \left(-4 t^{2}\right) \quad \varphi_{2}(t)=(3+\cos (t)+\cos (2 t)) / 5
$$

identify the distribution with of

$$
\frac{\varphi_{1}(t)+\varphi_{2}(t)}{2} .
$$

7. Suppose X_{1} and X_{2} are independent random variables, and suppose also that X_{1} and $X_{1}-X_{2}$ are independent. Show that

$$
P_{X_{1}}\left[X_{1}=c\right]=1
$$

for some constant c.
Hint: write $X_{2}=X_{1}+\left(X_{2}-X_{1}\right)$, and recall that if $\varphi(t)$ is an arbitrary $c f$, then $\varphi(t)$ is continuous for all t.
8. Suppose that $\operatorname{mgf} M_{X}(t)$ is defined, for a suitable neighbourhood of zero $(-h, h)$, as

$$
M_{X}(t)=\frac{9 e^{-t}}{(3+2 t)^{2}} .
$$

Find an expression for $\mathbb{E}_{X}\left[X^{r}\right]$, for $r=1,2, \ldots$,
9. Suppose that $X \sim \operatorname{Binomial}(n, \theta)$ for integer $n \geq 1$, and $0<\theta<1$. Let

$$
Z_{n}=\frac{(X-n \theta)}{\sqrt{n \theta(1-\theta)}} .
$$

Find the first two non-zero terms in the power series expansion of the cumulant generating function of Z_{n}, and the order of approximation (in terms of n) when truncating the expansion at the second term, for large n.

Recall that

$$
\log \left\{(1+z)^{n}\right\}=n\left\{z-z^{2} / 2+\cdots\right\}
$$

