MATH 556-EXERCISES 2

Not for assessment.

1. Suppose that X is a continuous rv with pdf f_{X} and characteristic function (cf) φ_{X}. Find $\varphi_{X}(t)$ if
(a)

$$
f_{X}(x)=\frac{1}{2}|x| \exp \{-|x|\} \quad x \in \mathbb{R} .
$$

(b)

$$
f_{X}(x)=\exp \left\{-x-e^{-x}\right\} \quad x \in \mathbb{R}
$$

(c)

$$
f_{X}(x)=\frac{1}{\cosh (\pi x)}=\frac{2}{e^{-\pi x}+e^{\pi x}}=\sum_{k=0}^{\infty}(-1)^{k} \exp \{-(2 k+1) \pi|x|\} \quad x \in \mathbb{R} .
$$

Integrate term by term to find the cf, and leave your answer as an infinite sum if necessary.
2. Using the inversion formulae, find pmf or $\operatorname{pdf} f_{X}(x)$ for the following cfs defined for $t \in \mathbb{R}$.
(a)

$$
\varphi_{X}(t)=\mathbb{1}_{(-1,1)}(t)(1-|t|)
$$

where as previously defined, the function $\mathbb{1}_{A}(x)$ is the indicator function for set A

$$
\mathbb{1}_{A}(x)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array} .\right.
$$

(b)

$$
\varphi_{X}(t)=\frac{2(1-\cos t)}{t^{2}}
$$

Hint: recall the result in part (a).
(c) For some parameter $\theta>0$

$$
\varphi_{X}(t)=\cos (\theta t)
$$

3. By considering derivatives at $t=0$, and the implied moments, assess whether the function

$$
\varphi(t)=\frac{1}{1+t^{4}}
$$

is a valid cf for a pmf or pdf.
4. Suppose that cf $\varphi_{X}(t)$ takes the form

$$
\varphi_{X}(t)=\frac{1}{2}(\cos (t)+\cos (\pi t)) .
$$

(a) Is the distribution of X (absolutely) continuous? Justify your answer.
(b) Comment on the finiteness or existence of $\mathbb{E}_{X}\left[X^{r}\right]$ for $r \geq 1$.
5. Consider the function

$$
\varphi(t)=\frac{1}{\left(1+2 t^{2}+t^{4}\right)}
$$

Assess whether this function is a valid cf, and if it is valid, describe in as much detail as possible the distribution to which it corresponds.
6. Suppose that X_{1}, \ldots, X_{n} are independent and identically distributed Cauchy rvs each with

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad x \in \mathbb{R} \quad \varphi_{X}(t)=\exp \{-|t|\} \quad t \in \mathbb{R}
$$

Let continuous random variable Z_{n} be defined by

$$
Z_{n}=\frac{1}{\bar{X}}=\frac{n}{\sum_{j=1}^{n} X_{j}}
$$

Find an expression for $P_{Z_{n}}\left[\left|Z_{n}\right| \leq c\right]$ for constant $c>0$.
7. A probability distribution for $\mathrm{rv} X$ is termed infinitely divisible if, for all positive integers n, there exists a sequence of independent and identically distributed rvs $Z_{n 1}, \ldots, Z_{n n}$ such that X and

$$
Z_{n}=\sum_{j=1}^{n} Z_{n j}
$$

have the same distribution, that is, the characteristic function of X can be written $\varphi_{X}(t)=\left\{\varphi_{Z}(t)\right\}^{n}$ for some characteristic function φ_{Z}. Show that the $\operatorname{Gamma}(\alpha, \beta)$ distribution is infinitely divisible.
8. Suppose that X has a finite mixture distribution with cdf

$$
F_{X}(x)=\sum_{k=1}^{K} \omega_{k} F_{k}(x) \quad x \in \mathbb{R}
$$

where K is a positive integer, F_{1}, \ldots, F_{K} are distinct cdfs, and $\omega_{1}, \ldots, \omega_{K}$ satisfy

$$
0<\omega_{k}<1 \quad \text { for all } k \quad \sum_{k=1}^{K} \omega_{k}=1
$$

Find the cf for X in terms of the cfs corresponding to F_{1}, \ldots, F_{K}.
9. Prove that if f_{X} is pdf for a continuous random variable, then $\left|\varphi_{X}(t)\right| \longrightarrow 0$ as $|t| \longrightarrow \infty$.

Hint: Use the fact that f_{X} can be approximated to arbitrary accuracy by a step-function; for each $\epsilon>0$, there exists a step-function $f_{\epsilon}(x)$ defined (for some $K=K(\epsilon)$) as

$$
f_{\epsilon}(x)=\sum_{k=1}^{K} c_{k} \mathbb{1}_{A_{k}}(x)
$$

where $c_{k}, k=1, \ldots, K$ are real constants, and A_{1}, \ldots, A_{K} form a partition of \mathbb{R}, such that

$$
\int_{-\infty}^{\infty}\left|f_{X}(x)-f_{\epsilon}(x)\right| d x<\epsilon
$$

10. A sufficient condition for a distribution defined on \mathbb{R} to be (absolutely) continuous is that

$$
\int_{-\infty}^{\infty}|\varphi(t)| d t<\infty
$$

where $|\varphi(t)|$ is the modulus of the complex-valued quantity $\varphi(t)$. By finding a suitable counterexample, show that this is not a necessary condition for (absolute) continuity. That is, find an (absolutely) continuous distribution with of $\varphi(t)$ for which

$$
\int_{-\infty}^{\infty}|\varphi(t)| d t=\infty
$$

Hint: check the distributions formula sheet, and deduce the cfs from the mgfs.

