MATH 556 - Exercises 1

Not for assessment.

1. The absolutely continuous $\operatorname{cdf} F_{X}$ has density

$$
f_{X}(x)=c \exp \{-\lambda|x-\theta|\} \quad x \in \mathbb{R}
$$

for parameters $\lambda>0$ and $\theta \in \mathbb{R}$.
Compute
(a) The constant c;
(b) The cdf F_{X};
(c) The quantile function Q_{X};
(d) The expectation $\mathbb{E}_{X}[X]$, defined by

$$
\mathbb{E}_{X}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

(e) The variance $\operatorname{Var}_{X}[X]$, defined by

$$
\operatorname{Var}_{X}[X]=\mathbb{E}_{X}\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x
$$

where $\mu=\mathbb{E}_{X}[X]$.
2. Find the quantile function, $Q_{X}(p)$ for $0<p<1$, for the following cases:
(a) X is distributed as $W \operatorname{eibull}(3,2)$ (given on the Distributions Formula Sheet).
(b) X has the discrete distribution with

$$
f_{X}(x)=c \mathbb{1}_{\{1,2, \ldots, 10\}}(x) \quad x \in \mathbb{R}
$$

for some c to be determined.
(c) X has the distribution with

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} & 0 \leq x<1 \\
\frac{3}{4} & x=1 \\
(1-c \exp (-(x-1)) & x>1
\end{array}\right.
$$

for some c to be determined.
3. Suppose that X has a standard Normal distribution, $X \sim \operatorname{Normal}(0,1)$ with pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} \quad x \in \mathbb{R}
$$

For a transformation $Y=g(X)$ of X for some real-valued function $g(\cdot)$, we may compute the cdf of Y using the identity

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{X}[g(X) \leq y] \quad y \in \mathbb{R} .
$$

Compute and sketch (or plot) the pdfs of the following transformed random variables
(a) $Y_{1}=X^{2}$
(b) $Y_{2}=|X|$
(c) $Y_{3}=2 X-X^{2}$
(d) $Y_{4}=F_{X}(X)$, where $F_{X}($.$) is the cdf of X$.

Hint: you do not need to compute the explicit form of $F_{X}(x)$ in this case, simply use the fact that it is a strictly increasing function.
4. Show that if $X \sim \operatorname{Pareto}(\theta, \alpha)$ (parameterized as on the distributions handout), then

$$
X \stackrel{d}{=} g(Z)
$$

where $Z \sim \operatorname{Exponential}(1)$, and $g($.$) is some transformation to be found.$
5. Suppose that X is a continuous random variable with support $\mathcal{X}=\mathbb{R}$, and with $\mathrm{cdf} F_{X}(x)$. Suppose that Y is a transformed variable given by

$$
Y=\left\{F_{X}(X)\right\}^{k}
$$

for positive integer k. Find the expectation of Y.
Hint: note that $0 \leq Y \leq 1$ with probability 1; use the result

$$
\mathbb{E}_{Y}[Y]=\int_{0}^{1} y f_{Y}(y) d y \equiv \int_{-\infty}^{\infty}\left\{F_{X}(x)\right\}^{k} f_{X}(x) d x
$$

6. A collection of d random variables $X=\left(X_{1}, \ldots, X_{d}\right)$ are termed independent if

$$
f_{X_{1}, \ldots, X_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} f_{X_{j}}\left(x_{j}\right) \quad \text { for all } \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

Consider the joint pdf defined on the unit cube $(0,1)^{3}$.

$$
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=c\left(1-\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \sin \left(2 \pi x_{3}\right)\right)
$$

and zero otherwise, for some constant c.
(a) Are $\left(X_{1}, X_{2}\right)$ independent?
(b) Are $\left(X_{1}, X_{2}, X_{3}\right)$ independent?

Justify your answers by considering the relevant marginal distributions.

