MATH 556 - ASSIGNMENT 4

To be handed in not later than 11.59pm, 5th December 2022.
 Please submit your solutions as pdf via myCourses.

1. Consider the three-level hierarchical model

LEVEL 3: $\quad \theta=\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \quad$ Fixed
LEVEL 2: $\quad X \sim \operatorname{Gamma}\left(\theta_{1}, \theta_{2}\right)$
LEVEL 1: $\quad Y_{1}, \ldots, Y_{n} \mid X=x \sim \operatorname{Poisson}(x) \quad Y_{1}, \ldots, Y_{n}$ independent given X
(a) Find the (marginal) joint pmf of Y_{1}, \ldots, Y_{n}.

4 Marks
(b) Find the marginal pmf of Y_{1}.

2 Marks
(c) Find the correlation between Y_{1} and Y_{2}.

4 Marks
2. For $n \geq 1$ random variables X_{1}, \ldots, X_{n}, the order statistics, Y_{1}, \ldots, Y_{n}, are defined by

$$
Y_{i}=X_{(i)}-\text { "the } i \text { th smallest value in } X_{1}, \ldots, X_{n} "
$$

for $i=1, \ldots, n$. For example

$$
Y_{1}=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\} \quad Y_{n}=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\} .
$$

For X_{1}, \ldots, X_{n} independently distributed from continuous distribution with pdf f_{X}, the joint pdf of order statistics Y_{1}, \ldots, Y_{n} can be shown to be

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=n!f_{X}\left(y_{1}\right) \ldots f_{X}\left(y_{n}\right) \quad y_{1}<\ldots<y_{n}
$$

and zero otherwise.
(a) Suppose X_{1}, X_{2}, X_{3} are independent random variables having an Exponential(1) distribution. Find the distribution of the second order statistic, Y_{2}, that is, the second smallest of X_{1}, X_{2}, X_{3}.

5 Marks
(b) Suppose X_{1}, \ldots, X_{n} are independent continuous random variables with cdf F_{X}

$$
F_{X}(x)=1-x^{-1} \quad x \geq 1
$$

and zero otherwise.
Show that $Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ has a degenerate distribution in the limit as $n \longrightarrow \infty$, that is, that

$$
\lim _{n \rightarrow \infty} P_{Z_{n}}\left[Z_{n}=c\right]=1
$$

for some c to be identified, but that there exists a sequence of real values $\left\{\alpha_{n}\right\}$ such that $U_{n}=Z_{n}^{\alpha_{n}}$ has distribution F_{X} for each n.

5 Marks
Hint: for the first part, having identified c, show that

$$
P_{Z_{n}}\left[Z_{n}<c\right]+P_{Z_{n}}\left[Z_{n}>c\right] \longrightarrow 0
$$

as $n \longrightarrow \infty$.

