MATH 556 - ASSIGNMENT 4

To be handed in not later than 11.59pm, 5th December 2022. Please submit your solutions as pdf via myCourses.

1. Consider the three-level hierarchical model

LEVEL 3 :	$\theta = (\theta_1, \theta_2) \in \mathbb{R}^+ \times \mathbb{R}^+$	Fixed
LEVEL 2 :	$X \sim Gamma(\theta_1, \theta_2)$	
LEVEL 1 :	$Y_1, \ldots, Y_n X = x \sim Poisson(x)$	Y_1, \ldots, Y_n independent given X

- (a) Find the (marginal) joint pmf of Y_1, \ldots, Y_n . 4 Marks
- (b) Find the marginal pmf of Y_1 .
- (c) Find the correlation between Y_1 and Y_2 . 4 Marks
- 2. For $n \ge 1$ random variables X_1, \ldots, X_n , the *order statistics*, Y_1, \ldots, Y_n , are defined by

 $Y_i = X_{(i)}$ – "the *i*th smallest value in X_1, \ldots, X_n "

for $i = 1, \ldots, n$. For example

$$Y_1 = X_{(1)} = \min \{X_1, \dots, X_n\} \qquad Y_n = X_{(n)} = \max \{X_1, \dots, X_n\}$$

For X_1, \ldots, X_n independently distributed from continuous distribution with pdf f_X , the joint pdf of order statistics Y_1, \ldots, Y_n can be shown to be

$$f_{Y_1, \dots, Y_n}(y_1, \dots, y_n) = n! f_X(y_1) \dots f_X(y_n) \qquad y_1 < \dots < y_n$$

and zero otherwise.

(a) Suppose X_1, X_2, X_3 are independent random variables having an *Exponential*(1) distribution. Find the distribution of the second order statistic, Y_2 , that is, the second smallest of X_1, X_2, X_3 .

5 Marks

2 Marks

(b) Suppose X_1, \ldots, X_n are independent continuous random variables with cdf F_X

$$F_X(x) = 1 - x^{-1}$$
 $x \ge 1$

and zero otherwise.

Show that $Z_n = \min\{X_1, \ldots, X_n\}$ has a **degenerate** distribution in the limit as $n \to \infty$, that is, that

$$\lim_{n \to \infty} P_{Z_n}[Z_n = c] = 1$$

for some *c* to be identified, but that there exists a sequence of real values $\{\alpha_n\}$ such that $U_n = Z_n^{\alpha_n}$ has distribution F_X for each *n*.

5 Marks

Hint: for the first part, having identified c, show that

$$P_{Z_n}[Z_n < c] + P_{Z_n}[Z_n > c] \longrightarrow 0$$

as $n \longrightarrow \infty$.

MATH 556 ASSIGNMENT 4

Page 1 of 1