MATH 556 - ASSIGNMENT 4 - Solutions

1. Consider the three-level hierarchical model

LEVEL 3: $\quad \theta=\left(\theta_{1}, \theta_{2}\right) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \quad$ Fixed
LEVEL 2: $\quad X \sim \operatorname{Gamma}\left(\theta_{1}, \theta_{2}\right)$
LEVEL 1: $\quad Y_{1}, \ldots, Y_{n} \mid X=x \sim \operatorname{Poisson}(x) \quad Y_{1}, \ldots, Y_{n}$ independent given X
(a) Find the (marginal) joint pmf of Y_{1}, \ldots, Y_{n}.

We have by direct calculation, for $\left(y_{1}, \ldots, y_{n}\right) \in\left\{\mathbb{Z}^{+}\right\}^{n}$,

$$
\begin{aligned}
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right) & =\int_{0}^{\infty} \prod_{i=1}^{n} f_{Y \mid X}\left(y_{i} \mid x\right) f_{X}(x) d x \\
& =\int_{0}^{\infty} \prod_{i=1}^{n} \frac{e^{-x} x^{y_{i}}}{y_{i}!} \frac{\theta_{2}^{\theta_{1}}}{\Gamma\left(\theta_{1}\right)} x^{\theta_{1}-1} \exp \left\{-\theta_{2} x\right\} d x \\
& =\frac{\theta_{2}^{\theta_{1}}}{\Gamma\left(\theta_{1}\right)} \frac{1}{\prod_{i=1}^{n} y_{i}!} \int_{0}^{\infty} x^{s+\theta_{1}-1} \exp \left\{-\left(n+\theta_{2}\right) x\right\} d x \quad s=\sum_{i=1}^{n} y_{i} \\
& =\frac{\theta_{2}^{\theta_{1}}}{\Gamma\left(\theta_{1}\right)} \frac{1}{\prod_{i=1}^{n} y_{i}!} \frac{\Gamma\left(s+\theta_{1}\right)}{\left(n+\theta_{2}\right)^{s+\theta_{1}}}
\end{aligned}
$$

4 Marks
(b) Find the marginal pmf of Y_{1}.

Setting $n=1$ in the above formula, we have that

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{\theta_{2}^{\theta_{1}}}{\Gamma\left(\theta_{1}\right)} \frac{1}{y_{1}!} \frac{\Gamma\left(y_{1}+\theta_{1}\right)}{\left(1+\theta_{2}\right)^{y_{1}+\theta_{1}}}=\frac{\Gamma\left(y_{1}+\theta_{1}\right)}{\Gamma\left(\theta_{1}\right) y_{1}!}\left(\frac{1}{1+\theta_{1}}\right)^{y_{1}}\left(\frac{\theta_{2}}{1+\theta_{1}}\right)^{\theta_{1}} \quad y_{1} \in \mathbb{Z}^{+}
$$

and zero otherwise.
2 Marks
This is in fact a Negative Binomial distribution.
(c) Find the correlation between Y_{1} and Y_{2}.

This is most easily computed using iterated expectation: we have

$$
\mathbb{E}_{Y_{1}}\left[Y_{1}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y_{1} \mid X}\left[Y_{1} \mid X\right]\right]=\mathbb{E}_{X}[X]=\frac{\theta_{1}}{\theta_{2}}
$$

from the formula sheet. Clearly $\mathbb{E}_{Y_{1}}\left[Y_{1}\right]=\mathbb{E}_{Y_{2}}\left[Y_{2}\right]$. Also

$$
\mathbb{E}_{Y_{1}}\left[Y_{1}^{2}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y_{1} \mid X}\left[Y_{1}^{2} \mid X\right]\right]=\mathbb{E}_{X}\left[\operatorname{Var}_{Y_{1} \mid X}\left[Y_{1} \mid X\right]+\left\{\mathbb{E}_{Y_{1} \mid X}\left[Y_{1} \mid X\right]\right\}^{2}\right]=\mathbb{E}_{X}\left[X+X^{2}\right]
$$

by properties of the Poisson distribution. Thus

$$
\operatorname{Var}_{Y_{1}}\left[Y_{1}\right]=\mathbb{E}_{Y_{1}}\left[Y_{1}^{2}\right]-\left\{\mathbb{E}_{Y_{1}}\left[Y_{1}\right]\right\}^{2}=\mathbb{E}_{X}[X]+\mathbb{E}_{X}\left[X^{2}\right]-\left\{\mathbb{E}_{X}[X]\right\}^{2}=\frac{\theta_{1}}{\theta_{2}}+\frac{\theta_{1}}{\theta_{2}^{2}}=\frac{\theta_{1}\left(1+\theta_{2}\right)}{\theta_{2}^{2}}
$$

Finally,

$$
\mathbb{E}_{Y_{1}, Y_{2}}\left[Y_{1} Y_{2}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y_{1}, Y_{2} \mid X}\left[Y_{1} Y_{2} \mid X\right]\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y_{1} \mid X}\left[Y_{1} \mid X\right] \mathbb{E}_{Y_{2} \mid X}\left[Y_{2} \mid X\right]\right]
$$

by conditional independence. As before, $\mathbb{E}_{Y_{1} \mid X}\left[Y_{1} \mid X\right]=\mathbb{E}_{Y_{2} \mid X}\left[Y_{2} \mid X\right]=X$. Thus

$$
\mathbb{E}_{Y_{1}, Y_{2}}\left[Y_{1} Y_{2}\right]=\mathbb{E}_{X}\left[X^{2}\right]=\operatorname{Var}_{X}[X]+\left\{\mathbb{E}_{X}[X]\right\}^{2}=\frac{\theta_{1}}{\theta_{2}^{2}}+\frac{\theta_{1}^{2}}{\theta_{2}^{2}}=\frac{\theta_{1}\left(1+\theta_{1}\right)}{\theta_{2}^{2}}
$$

and hence

$$
\operatorname{Cov}_{Y_{1}, Y_{2}}\left[Y_{1}, Y_{2}\right]=\frac{\theta_{1}\left(1+\theta_{1}\right)}{\theta_{2}^{2}}-\frac{\theta_{1}^{2}}{\theta_{2}^{2}}=\frac{\theta_{1}}{\theta_{2}^{2}}
$$

and

$$
\operatorname{Corr}_{Y_{1}, Y_{2}}\left[Y_{1}, Y_{2}\right]=\frac{\operatorname{Cov}_{Y_{1}, Y_{2}}\left[Y_{1}, Y_{2}\right]}{\operatorname{Var}_{Y_{1}}\left[Y_{1}\right]}=\frac{1}{1+\theta_{2}}
$$

4 Marks
2. For $n \geq 1$ random variables X_{1}, \ldots, X_{n}, the order statistics, Y_{1}, \ldots, Y_{n}, are defined by

$$
Y_{i}=X_{(i)}-\text { "the ith smallest value in } X_{1}, \ldots, X_{n} "
$$

for $i=1, \ldots, n$. For example

$$
Y_{1}=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\} \quad Y_{n}=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

For X_{1}, \ldots, X_{n} independently distributed from continuous distribution with $p d f f_{X}$, the joint $p d f$ of order statistics Y_{1}, \ldots, Y_{n} can be shown to be

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=n!f_{X}\left(y_{1}\right) \ldots f_{X}\left(y_{n}\right) \quad y_{1}<\ldots<y_{n}
$$

and zero otherwise.
(a) Suppose X_{1}, X_{2}, X_{3} are independent random variables having an Exponential(1) distribution. Find the distribution of the second order statistic, Y_{2}, that is, the second smallest of X_{1}, X_{2}, X_{3}.
From first principles, we have

$$
f_{Y_{1}, Y_{2}, Y_{3}}\left(y_{1}, y_{2}, y_{3}\right)=3!\exp \left\{-\left(y_{1}+y_{2}+y_{3}\right)\right\} \quad 0<y_{1}<y_{2}<y_{3}<\infty
$$

so, for $y_{2}>0$,

$$
\begin{aligned}
f_{Y_{2}}\left(y_{2}\right) & =6 \int_{0}^{y_{2}} \int_{y_{2}}^{\infty} \exp \left\{-\left(y_{1}+y_{2}+y_{3}\right)\right\} d y_{3} d y_{1} \\
& =6 \exp \left\{-y_{2}\right\} \int_{0}^{y_{2}} \exp \left\{-y_{1}\right\} \exp \left\{-y_{2}\right\} d y_{1} \\
& =6 \exp \left\{-2 y_{2}\right\} \int_{0}^{y_{2}} \exp \left\{-y_{1}\right\} d y_{1} \\
& =6 \exp \left\{-2 y_{2}\right\}\left(1-\exp \left\{-y_{2}\right\}\right) .
\end{aligned}
$$

Alternatively, using the general result from lectures, for $Y_{j}=X_{(j)}$, we have

$$
\begin{aligned}
f_{Y_{j}}\left(y_{j}\right) & =\frac{n!}{(j-1)!(n-j)!}\left\{F_{X}\left(y_{j}\right)\right\}^{j-1} f_{X}\left(y_{j}\right)\left\{1-F_{X}\left(y_{j}\right)\right\}^{n-j} \quad y_{j}>0 \\
& \left.=\frac{3!}{(2-1)!(3-2)!}\left\{1-\exp \left\{-y_{2}\right\}\right\}^{2-1} \exp \left\{-y_{2}\right\}\left\{\exp \left\{-y_{2}\right\}\right)\right\}^{3-2} \quad j=2 \\
& \left.=6\left\{1-\exp \left\{-y_{2}\right\}\right)\right\} \exp \left\{-2 y_{2}\right\}
\end{aligned}
$$

as before.
(b) Suppose X_{1}, \ldots, X_{n} are independent continuous random variables with cdf F_{X}

$$
F_{X}(x)=1-x^{-1} \quad x \geq 1
$$

and zero otherwise.
Show that $Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ has a degenerate distribution in the limit as $n \longrightarrow \infty$, that is, that

$$
\lim _{n \longrightarrow \infty} P_{Z_{n}}\left[Z_{n}=c\right]=1
$$

for some c to be identified, but that there exists a sequence of real values $\left\{\alpha_{n}\right\}$ such that $U_{n}=Z_{n}^{\alpha_{n}}$ has distribution F_{X} for each n.
Hint: for the first part, having identified c, show that

$$
P_{Z_{n}}\left[Z_{n}<c\right]+P_{Z_{n}}\left[Z_{n}>c\right] \longrightarrow 0
$$

as $n \longrightarrow \infty$.
For the first part, it is evident that we should inspect $c=1$ as the degenerate limit. Then

$$
P_{Z_{n}}\left[Z_{n}<1\right]=0
$$

by definition of F_{X}, and

$$
P_{Z_{n}}\left[Z_{n}>1\right]=1-F_{Z_{n}}(1)=\left\{1-F_{X}(1)\right\}^{n}=0
$$

by the result in lectures that for the minimum order statistic.

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-\frac{1}{z^{n}} \quad z \geq 1
$$

Now for $u \geq 1$,

$$
F_{U_{n}}(u)=P_{U_{n}}\left[U_{n} \leq u\right]=P_{Z_{n}}\left[Z_{n}^{\alpha_{n}} \leq u\right]=P_{Z_{n}}\left[Z_{n} \leq u^{1 / \alpha_{n}}\right]=F_{Z_{n}}\left(u^{1 / \alpha_{n}}\right)
$$

so

$$
F_{U_{n}}(u)=1-\frac{1}{u^{n / \alpha_{n}}} .
$$

Thus choosing $\alpha_{n}=n$ yields that

$$
F_{U_{n}}(u)=1-\frac{1}{u}=F_{X}(u)
$$

as required.
5 Marks

