MATH 556 - ASSIGNMENT 3

To be handed in not later than 11.59pm, 21st November 2022.
 Please submit your solutions as pdf via myCourses.

1. Suppose that Z_{1} and Z_{2} are independent random variables having a $\operatorname{Normal}(0,1)$ distribution.
(a) Find the joint pdf of random variables X_{1} and X_{2} defined by

$$
X_{1}=\frac{Z_{1}}{Z_{2}} \quad X_{2}=Z_{1}+Z_{2} .
$$

(b) Find the covariance between random variables Y_{1} and Y_{2} where

$$
Y_{1}=Z_{1}+Z_{2} \quad Y_{2}=Z_{1}-Z_{2}
$$

Are Y_{1} and Y_{2} independent ? Justify your answer.
2 Marks
1 Mark
(c) Find the characteristic function of

$$
V=a_{1} Z_{1}+a_{2} Z_{2}
$$

for real constants a_{1} and a_{2}.
2 Marks
2. Suppose that $X=\left(X_{1}, X_{2}\right)^{\top} \sim \operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ where $\alpha_{1}=\alpha_{2}=\alpha_{3}=2$.
(a) Prove (showing your working) that marginally $X_{1} \sim \operatorname{Beta}(a, b)$, for a, b to be identified.
(b) Find the correlation between X_{1} and V defined by

$$
V=1-X_{1} .
$$

3. Suppose that X and Y have joint distribution specified by

$$
\begin{gathered}
X \sim \operatorname{Beta}(1,1) \\
Y \mid X=x \sim \operatorname{Binomial}(n, x)
\end{gathered}
$$

for fixed $n \geq 1$. Find $\operatorname{Var}_{Y}[Y]$.

