MATH 556 - ASSIGNMENT 3 - SOLUTIONS

1. Suppose that Z_{1} and Z_{2} are independent random variables having a $\operatorname{Normal}(0,1)$ distribution.
(a) Find the joint pdf of random variables X_{1} and X_{2} defined by

$$
X_{1}=\frac{Z_{1}}{Z_{2}} \quad X_{2}=Z_{1}+Z_{2}
$$

The inverse transformation is

$$
Z_{1}=\frac{X_{1} X_{2}}{1+X_{1}} \quad Z_{2}=\frac{X_{2}}{1+X_{1}}
$$

and so the Jacobian is

$$
\left|\operatorname{det}\left[\begin{array}{ll}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} \\
\frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}}
\end{array}\right]\right|=\left|\operatorname{det}\left[\begin{array}{cc}
\frac{x_{2}}{\left(1+x_{1}\right)^{2}} & \frac{x_{1}}{1+x_{1}} \\
-\frac{x_{2}}{\left(1+x_{1}\right)^{2}} & \frac{1}{\left(1+x_{1}\right)^{2}}
\end{array}\right]\right|=\frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}}
$$

and hence, by the independence of Z_{1} and Z_{2} the joint pdf is

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =f_{Z_{1}}\left(\frac{x_{1} x_{2}}{1+x_{1}}\right) f_{Z_{2}}\left(\frac{x_{2}}{1+x_{1}}\right) \frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left[\frac{x_{1}^{2} x_{2}^{2}}{\left(1+x_{1}\right)^{2}}+\frac{x_{2}^{2}}{\left(1+x_{1}\right)^{2}}\right]\right\} \frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{1}{2} \frac{1+x_{1}^{2}}{\left(1+x_{1}\right)^{2}} x_{2}^{2}\right\} \frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}}
\end{aligned}
$$

which has support \mathbb{R}^{2}.
5 Marks
(b) Find the covariance between random variables Y_{1} and Y_{2} where

$$
Y_{1}=Z_{1}+Z_{2} \quad Y_{2}=Z_{1}-Z_{2}
$$

We have by results from lectures that

$$
\begin{aligned}
& \mathbb{E}_{Y_{1}}\left[Y_{1}\right]=\mathbb{E}_{Z_{1}}\left[Z_{1}\right]+\mathbb{E}_{Z_{2}}\left[Z_{2}\right]=0 \\
& \mathbb{E}_{Y_{2}}\left[Y_{2}\right]=\mathbb{E}_{Z_{1}}\left[Z_{1}\right]-\mathbb{E}_{Z_{2}}\left[Z_{2}\right]=0
\end{aligned}
$$

and therefore

$$
\operatorname{Cov}_{Y_{1}, Y_{2}}\left[Y_{1}, Y_{2}\right]=\mathbb{E}_{Y_{1}, Y_{2}}\left[Y_{1} Y_{2}\right]=\mathbb{E}_{Z_{1}, Z_{2}}\left[\left(Z_{1}+Z_{2}\right)\left(Z_{1}-Z_{2}\right)\right]=\mathbb{E}_{Z_{1}}\left[Z_{1}^{2}\right]-\mathbb{E}_{Z_{2}}\left[Z_{2}^{2}\right]=0 .
$$

as Z_{1} and Z_{2} are identically distributed.
Are Y_{1} and Y_{2} independent? Justify your answer.
1 Mark
We have that

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
Z_{1} \\
Z_{2}
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
Z_{1} \\
Z_{2}
\end{array}\right]
$$

say, so therefore by properties of the multivariate normal, $\left(Y_{1}, Y_{2}\right)^{\top} \sim \operatorname{Normal}_{2}(\mathbf{0}, \Sigma)$, where

$$
\Sigma=\mathbf{A A}^{\top}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

and so as this matrix is diagonal, we have that Y_{1} and Y_{2} are independent.
(c) Find the characteristic function of

$$
V=a_{1} Z_{1}+a_{2} Z_{2}
$$

for real constants a_{1} and a_{2}.
We have

$$
\begin{aligned}
\varphi_{V}(t)=\mathbb{E}_{V}[\exp \{i t V\}] & =\mathbb{E}_{Z_{1}, Z_{2}}\left[\exp \left\{i t\left(a_{1} Z_{1}+a_{2} Z_{2}\right)\right\}\right] \\
& =\mathbb{E}_{Z_{1}}\left[\exp \left\{i t\left(a_{1} Z_{1}\right)\right\}\right] \mathbb{E}_{Z_{2}}\left[\exp \left\{i t\left(a_{2} Z_{2}\right)\right\}\right] \quad \text { independence } \\
& =\varphi_{Z_{1}}\left(a_{1} t\right) \varphi_{Z_{2}}\left(a_{2} t\right) \\
& =\exp \left\{-\frac{a_{1}^{2} t^{2}}{2}\right\} \exp \left\{-\frac{a_{2}^{2} t^{2}}{2}\right\} \\
& =\exp \left\{-\frac{\left(a_{1}^{2}+a_{2}^{2}\right) t^{2}}{2}\right\}
\end{aligned}
$$

2 Marks
2. Suppose that $X=\left(X_{1}, X_{2}\right)^{\top} \sim \operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ where $\alpha_{1}=\alpha_{2}=\alpha_{3}=2$.
(a) Prove (showing your working) that marginally $X_{1} \sim \operatorname{Beta}(a, b)$, for a, b to be identified.

The joint pdf is given from the handout as

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{\Gamma(2+2+2)}{\Gamma(2) \Gamma(2) \Gamma(2)} x_{1} x_{2}\left(1-x_{1}-x_{2}\right)
$$

on the simplex \mathcal{S}_{2}

$$
\mathcal{S}_{2}=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, x_{2}<1,0<x_{1}+x_{2}<1\right\} .
$$

and zero otherwise. For the marginal

$$
f_{X_{1}}\left(x_{1}\right)=\int_{0}^{1-x_{1}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} \quad 0<x_{1}<1
$$

as for any fixed $x_{1}, 0<x_{1}+x_{2}<1$ implies that the joint pdf is only non-zero when $x_{2}<1-x_{1}$. Thus, for $0<x_{1}<1$,

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\frac{\Gamma(2+2+2)}{\Gamma(2) \Gamma(2) \Gamma(2)} x_{1} \int_{0}^{1-x_{1}} x_{2}\left(1-x_{1}-x_{2}\right) d x_{2} \\
& =\frac{\Gamma(2+2+2)}{\Gamma(2) \Gamma(2) \Gamma(2)} x_{1} \int_{0}^{1}\left(1-x_{1}\right) t\left(1-x_{1}-\left(1-x_{1}\right) t\right)\left(1-x_{1}\right) \mathrm{d} t \quad t=x_{2} /\left(1-x_{1}\right) \\
& =\frac{\Gamma(2+2+2)}{\Gamma(2) \Gamma(2) \Gamma(2)} x_{1}\left(1-x_{1}\right)^{3} \int_{0}^{1} t(1-t) d t \\
& =\frac{\Gamma(2+2+2)}{\Gamma(2) \Gamma(2) \Gamma(2)} x_{1}\left(1-x_{1}\right)^{3} \frac{\Gamma(2) \Gamma(2)}{\Gamma(2+2)}=\frac{\Gamma(2+2+2)}{\Gamma(2) \Gamma(4)} x_{1}\left(1-x_{1}\right)^{3}
\end{aligned}
$$

so therefore $X_{1} \sim \operatorname{Beta}(2,4)$.
(b) Find the correlation between X_{1} and V defined by

$$
V=1-X_{1} .
$$

For the covariance

$$
\mathbb{E}_{X_{1}, V}\left[X_{1} V\right] \equiv \mathbb{E}_{X_{1}}\left[X_{1}\left(1-X_{1}\right)\right]=\mathbb{E}_{X_{1}}\left[X_{1}\right]-\mathbb{E}_{X_{1}}\left[X_{1}^{2}\right]
$$

but

$$
\mathbb{E}_{X_{1}}\left[X_{1}\right] \mathbb{E}_{V}[V]=\mathbb{E}_{X_{1}}\left[X_{1}\right]\left(1-\mathbb{E}_{X_{1}}\left[X_{1}\right]\right)=\mathbb{E}_{X_{1}}\left[X_{1}\right]-\left\{\mathbb{E}_{X_{1}}\left[X_{1}\right]\right\}^{2}
$$

so therefore

$$
\operatorname{Cov}_{X_{1}, V}\left[X_{1}, V\right]=\mathbb{E}_{X_{1}, V}\left[X_{1} V\right]-\mathbb{E}_{X_{1}}\left[X_{1}\right] \mathbb{E}_{V}[V]=\left\{\mathbb{E}_{X_{1}}\left[X_{1}\right]\right\}^{2}-\mathbb{E}_{X_{1}}\left[X_{1}^{2}\right]=-\operatorname{Var}_{X_{1}}\left[X_{1}\right] .
$$

Hence, as

$$
\operatorname{Var}_{V}[V]=\operatorname{Var}_{X_{1}}\left[X_{1}\right]
$$

we have that

$$
\begin{aligned}
\operatorname{Corr}_{X_{1}, V}\left[X_{1}, V\right] & =\frac{\operatorname{Cov}_{X_{1}, V}\left[X_{1}, V\right]}{\sqrt{\operatorname{Var}_{X_{1}}\left[X_{1}\right] \operatorname{Var}_{V}[V]}} \\
& =\frac{-\operatorname{Var}_{X_{1}}\left[X_{1}\right]}{\sqrt{\operatorname{Var}_{X_{1}}\left[X_{1}\right] \operatorname{Var}_{X_{1}}\left[X_{1}\right]}}=-1 .
\end{aligned}
$$

3. Suppose that X and Y have joint distribution specified by

$$
\begin{gathered}
X \sim \operatorname{Beta}(1,1) \\
Y \mid X=x \sim \operatorname{Binomial}(n, x)
\end{gathered}
$$

for fixed $n \geq 1$. Find $\operatorname{Var}_{Y}[Y]$.
For any rv

$$
\mathbb{E}_{X}\left[X^{2}\right]=\left\{\mathbb{E}_{X}[X]\right\}^{2}+\operatorname{Var}_{X}[X]
$$

and here

$$
\mathbb{E}_{X}[X]=\frac{1}{2} \quad \operatorname{Var}_{X}[X]=\frac{1}{12} \quad \mathbb{E}_{X}\left[X^{2}\right]=\frac{1}{3} .
$$

Using iterated expectation, by properties of the Binomial distribution, we have

$$
\begin{aligned}
& \mathbb{E}_{Y}[Y]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}[Y \mid X]\right]=\mathbb{E}_{X}[n X]=n \mathbb{E}_{X}[X]=\frac{n}{2} \\
& \mathbb{E}_{Y}\left[Y^{2}\right]=\mathbb{E}_{X}\left[\mathbb{E}_{Y \mid X}\left[Y^{2} \mid X\right]\right]=\mathbb{E}_{X}\left[n^{2} X^{2}+n X(1-X)\right]=\frac{n(n-1)}{3}+\frac{n}{2}
\end{aligned}
$$

so therefore

$$
\operatorname{Var}_{Y}[Y]=\frac{n(n-1)}{3}+\frac{n}{2}-\frac{n^{2}}{4}=\frac{4 n(n-1)+6 n-3 n^{2}}{12}=\frac{n^{2}+2 n}{12}=\frac{n(n+2)}{12}
$$

Note also that

$$
\begin{aligned}
\operatorname{Var}_{Y}[Y] & =\mathbb{E}_{X}\left[\operatorname{Var}_{Y \mid X}[Y \mid X]\right]+\operatorname{Var}_{X}\left[\mathbb{E}_{Y \mid X}[Y \mid X]\right] \\
& =\mathbb{E}_{X}[n X(1-X)]+\operatorname{Var}_{X}[n X]=n \mathbb{E}_{X}[X(1-X)]+n^{2} \operatorname{Var}_{X}[X]
\end{aligned}
$$

which may be computed using properties of the $\operatorname{Beta}(1,1)$ distribution;

$$
\mathbb{E}_{X}[X(1-X)]=\int_{0}^{1} x(1-x) d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{6}
$$

so

$$
\operatorname{Var}_{Y}[Y]=\frac{n}{6}+\frac{n^{2}}{12}=\frac{n(n+2)}{12}
$$

Finally, note that by direct computation, the marginal pmf is

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{1}\binom{n}{y} x^{y}(1-x)^{n-y} d x \\
& =\binom{n}{y} \frac{\Gamma(y+1) \Gamma(n-y+1)}{\Gamma(n+2)} \\
& =\frac{n!}{y!(n-y)!} \frac{y!}{(n-y)!}(n+1)! \\
& =\frac{1}{n+1}
\end{aligned}
$$

and zero otherwise. Thus Y has a discrete Uniform distribution on the set $\{0,1, \ldots, n\}$ and by direct calculation

$$
\mathbb{E}_{Y}[Y]=\sum_{y=0}^{n} y \frac{1}{n+1}=\frac{1}{n+1} \sum_{y=0}^{n} y=\frac{1}{n+1} \frac{n(n+1)}{2}=\frac{n}{2}
$$

and

$$
\mathbb{E}_{Y}\left[Y^{2}\right]=\sum_{y=0}^{n} y^{2} \frac{1}{n+1}=\frac{1}{n+1} \sum_{y=0}^{n} y^{2}=\frac{1}{n+1} \frac{n(n+1)(2 n+1)}{6}=\frac{n(2 n+1)}{6}
$$

and

$$
\operatorname{Var}_{Y}[Y]=\frac{n(2 n+1)}{6}-\frac{n^{2}}{4}=\frac{n(n+2)}{12}
$$

