MATH 556 - ASSIGNMENT 2

To be handed in not later than 11.59pm, 31st October 2022.
 Please submit your solutions as pdf via myCourses.

1. Consider the discrete pmf, f_{X}, defined for $i=1,2, \ldots$ by

$$
f_{X}\left(x_{i}\right)=p_{i}
$$

where $\mathbb{K}=\left\{x_{1}, x_{2}, \ldots\right\}$, with $x_{i}>0$ for all i. Suppose that $\mu=\mathbb{E}_{X}[X]<\infty$.
Show that

$$
\mu e^{\mu} \leq \sum_{i=1}^{\infty} p_{i} x_{i} e^{x_{i}}
$$

2. For the following cfs, φ_{X}, find the corresponding distribution (by name, or in terms of the pmf, pdf or cdf), or demonstrate why the function is not a valid cf. You may quote results from the distributions formula sheet or from lectures.
(a) For $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\frac{2}{2+t^{2}}
$$

2 Marks
(b) For $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\frac{1}{2}(1+\cos (t)+i \sin (t))
$$

2 Marks
(c) For $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\frac{1}{2} e^{i t}\left(1+\exp \left\{e^{i t}-1-i t\right\}\right)
$$

4 Marks
3. A key result for cfs is that if X and Y are independent, and $Z=X+Y$, then

$$
\varphi_{Z}(t)=\varphi_{X}(t) \varphi_{Y}(t) .
$$

Does this result ever hold if $Z=X+Y$ but X and Y are not independent? Justify your answer.
4 Marks
4. Suppose that $X \sim$ Exponential(1) with cf denoted $\varphi_{X}(t)$, and that $\phi(\cdot)$ is the standard normal pdf. Consider the function

$$
\varphi(t)=\int_{-\infty}^{\infty} \varphi_{X}(t s) \phi(s) d s
$$

Is $\varphi(t)$ a valid cf? Justify your answer.
4 Marks

