MATH 556-ASSIGNMENT 2 - Solutions

1. Consider the discrete pmf, f_{X}, defined for $i=1,2, \ldots$ by

$$
f_{X}\left(x_{i}\right)=p_{i}
$$

where $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$, with $x_{i}>0$ for all i. Suppose that $\mu=\mathbb{E}_{X}[X]<\infty$.
Show that

$$
\mu e^{\mu} \leq \sum_{i=1}^{\infty} p_{i} x_{i} e^{x_{i}} .
$$

Apply Jensen's inequality to the function $g(x)=x e^{x}$ - this function is convex on \mathbb{R}^{+}, as

$$
\frac{d^{2}}{d x^{2}}\{g(x)\}=(x+2) e^{x}>0 \quad \text { for } x>0
$$

Therefore

$$
\mu e^{\mu}=g\left(\mathbb{E}_{X}[X]\right) \leq \mathbb{E}_{X}[g(X)]=\sum_{i=1}^{\infty} p_{i} x_{i} e^{x_{i}} .
$$

4 Marks
2. For the following cfs, φ_{X}, find the corresponding distribution (by name, or in terms of the pmf, pdf or cdf), or demonstrate why the function is not a valid cf. You may quote results from the distributions formula sheet or from lectures.
(a) For $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\frac{2}{2+t^{2}}
$$

This is the cf of a scaled version of the Double Exponential pdf

$$
\varphi_{X}(t)=\frac{2}{2+t^{2}}=\frac{1}{1+(t / \sqrt{2})^{2}}=\varphi_{Z}(t / \sqrt{2})
$$

where $Z \sim D E(1)$. Therefore $X \stackrel{d}{=} Z / \sqrt{2}$ and

$$
f_{X}(x)=\frac{1}{2 \sqrt{2}} \exp \left\{-\frac{|x|}{\sqrt{2}}\right\} \quad z \in \mathbb{R}
$$

(b) For $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\frac{1}{2}(1+\cos (t)+i \sin (t))
$$

We have that

$$
\varphi_{X}(t)=\frac{e^{i t 0}+e^{i t 1}}{2}
$$

so X is uniformly distributed on $\{0,1\}$, with $P_{X}[X=0]=P_{X}[X=1]=1 / 2$.
(c) For $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\frac{1}{2} e^{i t}\left(1+\exp \left\{e^{i t}-1-i t\right\}\right)
$$

We have

$$
\varphi_{X}(t)=\frac{1}{2}\left(e^{i t}+\exp \left\{\left(e^{i t}-1\right)\right\}\right)
$$

so X is distributed as a equal mixture of a mass at $x=1$ and a $\operatorname{Poisson}(1)$,
3. A key result for cfs is that if X and Y are independent, and $Z=X+Y$, then

$$
\varphi_{Z}(t)=\varphi_{X}(t) \varphi_{Y}(t)
$$

Does this result ever hold if $Z=X+Y$ but X and Y are not independent? Justify your answer.
Yes it can hold even if X and Y are not independent. For example, if we take $Y=X$ (with probability 1), the variables are certainly not independent, and $Z=X+X=2 X$. By the linear transformation result

$$
\varphi_{Z}(t)=\varphi_{X}(2 t)
$$

We require that $\varphi_{X}(2 t)=\left\{\varphi_{X}(t)\right\}^{2}$. This is satisfied by the cf

$$
\varphi_{X}(t)=\exp \{-|t|\} .
$$

4 Marks
4. Suppose that $X \sim$ Exponential(1) with cf denoted $\varphi_{X}(t)$, and that $\phi(\cdot)$ is the standard normal pdf. Consider the function

$$
\varphi(t)=\int_{-\infty}^{\infty} \varphi_{X}(t s) \phi(s) d s
$$

Is $\varphi(t)$ a valid cf ? Justify your answer.
Several potential methods using sufficient conditions. More directly, we have that

$$
\begin{array}{rlr}
\varphi(t)=\int_{-\infty}^{\infty} \varphi_{X}(t s) \phi(s) d s & =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} e^{i t s x} f_{X}(x) d x\right\} \phi(s) d s & \text { definition of } \varphi_{X} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i t s x} \phi(s) f_{X}(x) d x d s \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i t v} \frac{1}{x} \phi(v / x) f_{X}(x) d v d x & v=s x \\
& =\int_{-\infty}^{\infty} e^{i t v}\left\{\int_{-\infty}^{\infty} \frac{1}{x} \phi(v / x) f_{X}(x) d x\right\} d v \\
& =\int_{-\infty}^{\infty} e^{i t v} f_{V}(v) d v
\end{array}
$$

say, where

$$
f_{V}(v)=\int_{-\infty}^{\infty} \frac{1}{x} \phi(v / x) f_{X}(x) d x
$$

This is the marginal pdf arising from the joint model on (X, V) constructed as

$$
X \sim \text { Exponential }(1) \quad V \mid X=x \sim \operatorname{Normal}\left(0,1 / x^{2}\right)
$$

so $\varphi(t)$ is the of for this marginal.
Note: these calculations would work for any pair of distributions not merely the Exponential and Normal.
Alternatively,

$$
\begin{array}{rlr}
\varphi(t) & =\mathbb{E}_{Y}\left[\varphi_{X}(t Y)\right] & Y \sim \operatorname{Normal}(0,1) \\
& =\mathbb{E}_{Y}\left[\mathbb{E}_{X \mid Y}[\exp \{i t Y X\} \mid Y]\right] & \\
& =\mathbb{E}_{X, Y}[\exp \{i t X Y\}] & \\
& \equiv \mathbb{E}_{Z}[\exp \{i t Z\}] &
\end{array}
$$

say, where $Z=X Y$. Hence $\varphi(t) \equiv \varphi_{Z}(t)$.

