MATH 556 - ASSIGNMENT 1 - Solutions

1. Consider the pdf, $f_{X}(x)$, for continuous random variable X that takes the form

$$
f_{X}(x)=\mathbb{1}_{(-1,0)}(x)(c+x)+\mathbb{1}_{[0,1)}(x)(c-x) \quad x \in \mathbb{R}
$$

for some constant c, where $\mathbb{1}_{A}(x)$ is the indicator function for set A

$$
\mathbb{1}_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A .\end{cases}
$$

(a) Find the value of c.

When $x=0$, the pdf takes the value c, so the distribution is a 'triangular' distribution, bounded by the lines $y=c+x$ and $y=c-x$. As the pdf must integrate to 1 , and the area of the triangle is c, we must have $c=1$. The pdf is depicted below

$$
f_{X}(x)
$$

(b) Find the form of $c d f, F_{X}(x)$.

For the cdf, we compute

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\int_{-1}^{x} f_{X}(t) d t
$$

There are two cases to consider: for $-1<x<0$,

$$
F_{X}(x)=\int_{-1}^{x}(1+t) d t=\frac{1}{2}+x+\frac{x^{2}}{2}
$$

whereas for $0<x<1$

$$
\begin{aligned}
F_{X}(x)=\int_{-1}^{x} f_{X}(t) d t & =\int_{-1}^{0} f_{X}(t) d t+\int_{0}^{x} f_{X}(t) d t \\
& =\frac{1}{2}+x-\frac{x^{2}}{2}
\end{aligned}
$$

(c) Find the quantile function, $Q_{X}(p)$ for $0<p<1$.

When $0<p<1 / 2$, we can invert the cdf directly: we solve $F_{X}(x)=p$ for x, that is

$$
p=\frac{1}{2}+x+\frac{x^{2}}{2}
$$

or

$$
x^{2}+2 x+(1-2 p)=0
$$

The solutions to this quadratic are

$$
x=\frac{-2 \pm \sqrt{4-4(1-2 p)}}{2}=-1 \pm \sqrt{2 p}
$$

so we must take the larger root and deduce that for $0<p<1 / 2$,

$$
Q_{X}(p)=-1+\sqrt{2 p}
$$

For $1 / 2<p<1$, we solve

$$
p=\frac{1}{2}+x-\frac{x^{2}}{2}
$$

or

$$
x^{2}-2 x-(1-2 p)=0
$$

The solutions to this quadratic are

$$
x=\frac{2 \pm \sqrt{4+4(1-2 p)}}{2}=1 \pm \sqrt{2(1-p)}
$$

so we must take the smaller root and deduce that for $1 / 2<p<1$,

$$
Q_{X}(p)=1-\sqrt{2(1-p)} .
$$

$$
Q_{X}(p)
$$

3 Marks
(d) Find the expected value of the quantity $|X|, \mathbb{E}_{X}[|X|]$, defined by

$$
\mathbb{E}_{X}[|X|]=\int_{-\infty}^{\infty}|x| f_{X}(x) d x
$$

We have that

$$
\begin{aligned}
\mathbb{E}_{X}[|X|]=\int_{-\infty}^{\infty}|x| f_{X}(x) d x & =\int_{-1}^{1}|x| f_{X}(x) d x \\
& =\int_{-1}^{0}-x(1+x) d x+\int_{0}^{1} x(1-x) d x \\
& =\left[-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Hint: first sketch the pdf.
2. Suppose that $X=\left(X_{1}, X_{2}\right)$ where X_{1} and X_{2} are independent continuous random variables where each has a Uniform $(0,1)$ distribution. Find, by integrating the joint pdf over a suitable set B in \mathbb{R}^{2}, the probability

$$
P_{X}\left[X_{1}>2 X_{2}\right] .
$$

Hint: first identify the set B.
We have by independence that

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)=1 \quad 0<x_{1}, x_{2}<1
$$

and zero otherwise. We must integrate the joint pdf over the set

$$
B=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, x_{2}, 1, x_{1}>2 x_{2}\right\} .
$$

Thus

$$
P_{X}\left[X_{1}>2 X_{2}\right]=\int_{0}^{1} \int_{0}^{x_{1} / 2} d x_{2} d x_{1}=\int_{0}^{1} \frac{x_{1}}{2} d x_{1}=\frac{1}{4}
$$

3. One fair red die and one fair blue die are rolled, with the results of the rolls independent events. Let X_{1} denote the sum of the scores on the two dice, and let X_{2} denote the value equal to the score on the red die minus the score on the blue die.

Are X_{1} and X_{2} independent random variables? Justify your answer.
X_{1} and X_{2} are not independent; we have that

$$
P_{X}\left[X_{1}>X_{2}\right]=1
$$

so that the support of the joint pmf is not a Cartesian product, and so the two variables cannot be independent.

3 Marks
4. Suppose that X is a continuous random variable with distribution specified so that

$$
P_{X}[X>x]=\left\{\begin{array}{cl}
1 & x<0 \\
\exp \left\{2\left(1-e^{x}\right)\right\} & x \geq 0
\end{array}\right.
$$

Find the pdf of random variable Y, where

$$
Y=\exp \{X\}
$$

We have that for $x>0$

$$
F_{X}(x)=1-\exp \left\{2\left(1-e^{x}\right)\right\}
$$

so therefore for $y>1$

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{X}\left[e^{X}<y\right]=P_{X}[X<\log y]=F_{X}(\log y)=1-\exp \{2(1-y)\} .
$$

Hence

$$
f_{Y}(y)=2 \mathbb{1}_{(1, \infty)}(y) \exp \{2(1-y)\} \quad y \in \mathbb{R}
$$

