MATH 556: Mathematical Statistics I Basic Exchangeability Constructions

An infinite sequence of random variable $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is exchangeable (or infinitely exchangeable) if, for any $n \geq 1$ and sets $A_{1}, A_{2}, \ldots, A_{n} \subseteq \mathbb{R}$ we have that

$$
P_{X_{1}, \ldots, X_{n}}\left[\bigcap_{j=1}^{n}\left(X_{j} \in A_{j}\right)\right]=P_{X_{\tau(1)}, \ldots, X_{\tau(n)}}\left[\bigcap_{j=1}^{n}\left(X_{\tau(j)} \in A_{j}\right)\right]
$$

for all permutations $(\tau(1), \ldots, \tau(n))$ of the labels $(1, \ldots, n)$. In terms of cdfs, we can express this as that for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{\tau(1)}, \ldots, X_{\tau(n)}}\left(x_{1}, \ldots, x_{n}\right)
$$

We have the following characterization: the infinite sequence $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ is exchangeable if and only if the representation

$$
P_{X_{1}, \ldots, X_{n}}\left[\bigcap_{j=1}^{n}\left(X_{j} \in A_{j}\right)\right]=\int\left\{\prod_{j=1}^{n} P_{X_{j} \mid T}\left[X_{j} \in A_{j} \mid T=t\right]\right\} d F_{T}(t)
$$

holds for some other random variable T with distribution F_{T}. That is, the sequence is exchangeable if and only if elements in the sequence are conditionally independent given T, for some T with distribution F_{T}. In fact, T is a random variable formed as some function of $\left(X_{1}, \ldots, X_{n}\right)$ in the limiting case as $n \longrightarrow \infty$.
The representation also indicates that we can construct exchangeable random variables by following the construction

$$
\begin{aligned}
T & \sim f_{T}(t) \\
X_{1}, \ldots, X_{n} & \sim f_{X \mid T}(x \mid t) \quad \text { independent }
\end{aligned}
$$

EXAMPLE: Suppose $T \sim \operatorname{Uniform}(0,1)$, and $X_{1}, \ldots, X_{n} \mid T=t \sim \operatorname{Bernoulli}(t)$ independently. Then

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\int_{0}^{1} \prod_{j=1}^{n} f_{X_{j} \mid T}\left(x_{j} \mid t\right) f_{T}(t) d t=\int_{0}^{1} t^{s}(1-t)^{n-s} d t=\frac{\Gamma(s+1) \Gamma(n-s+1)}{\Gamma(n+2)}
$$

where $s=\sum_{j=1}^{n} x_{j}$, for $s=0,1, \ldots, n$, where the support of the joint pmf is the set $\{0,1\}^{n}$ of binary vectors of length n. The integral is analytically tractable as the integrand is proportional to a $\operatorname{Beta}(s+1, n-s+1)$ pdf. Note that in this construction, the quantity s is associated with a corresponding random variable

$$
S=\sum_{j=1}^{n} X_{i}
$$

which we can consider a summary statistic, and notice that the event $S=s$ corresponds to

$$
\binom{n}{s}
$$

individual sequences of x values which all have the same joint probability: this demonstrates exchangeability. Thus

$$
f_{S}(s)=\binom{n}{s} \frac{\Gamma(s+1) \Gamma(n-s+1)}{\Gamma(n+2)}=\frac{n!}{s!(n-s)!} \frac{s!(n-s)!}{(n+1)!}=\frac{1}{n+1} \quad s=0,1, \ldots, n
$$

and zero otherwise.

```
n<-10
s<-0:n
fs<-\operatorname{choose}(n,s)*gamma(s+1)*gamma(n-s+1)/gamma (n+2)
fs
```

```
+ [1] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909
+ [7] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909
sum(fs)
+ [1] 1
sim.exch01<-function(nv){ #Sample the exchangeable binary variables.
    Tv<-runif(1)
    Xv<-rbinom(nv,1,Tv)
}
svals<-replicate(10000,sum(sim.exch01(n))) #10000 replicate draws of S
table(svals)/10000
+ svals
+ 0
+0.0917 0.0973 0.0945 0.0869 0.0917 0.0911 0.0940 0.0879 0.0909 0.0891
+ 10
+ 0.0849
```

EXAMPLE: Suppose $T \sim \operatorname{Normal}(0,1)$, and $X_{1}, \ldots, X_{n} \mid T=t \sim \operatorname{Normal}(t, 1)$ independently. Then

$$
\begin{aligned}
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) & =\int_{-\infty}^{\infty} \prod_{j=1}^{n} f_{X_{j} \mid T}\left(x_{j} \mid t\right) f_{T}(t) d t \\
& =\int_{-\infty}^{\infty} \prod_{j=1}^{n}\left\{\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{1}{2}\left(x_{j}-t\right)^{2}\right\}\right\}\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{1}{2} t^{2}\right\} d t \\
& =\left(\frac{1}{2 \pi}\right)^{(n+1) / 2} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{n}\left(x_{j}-t\right)^{2}+t^{2}\right]\right\} d t .
\end{aligned}
$$

Now, using the completing the square formula

$$
A(t-a)^{2}+B(t-b)^{2}=(A+B)\left(t-\frac{A a+B b}{A+B}\right)^{2}+\frac{A B}{A+B}(a-b)^{2}
$$

we have

$$
\sum_{j=1}^{n}\left(x_{j}-t\right)^{2}+t^{2}=\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}+(n+1)\left(t-\frac{n \bar{x}}{n+1}\right)^{2}+\frac{n}{n+1} \bar{x}^{2}
$$

so therefore, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{n}\left(x_{j}-t\right)^{2}+t^{2}\right]\right\} d t & =\exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}+\frac{n}{n+1} \bar{x}^{2}\right]\right\} \int_{-\infty}^{\infty} \exp \left\{-\frac{(n+1)}{2}\left(t-\frac{n \bar{x}}{n+1}\right)^{2}\right\} d t \\
& =\exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}+\frac{n}{n+1} \bar{x}^{2}\right]\right\} \sqrt{\frac{2 \pi}{n+1}}
\end{aligned}
$$

as the integrand is proportional to a Normal pdf. Thus for $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$,

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{2 \pi}\right)^{n / 2} \sqrt{\frac{1}{n+1}} \exp \left\{-\frac{1}{2}\left[\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}+\frac{n}{n+1} \bar{x}^{2}\right]\right\}
$$

which also relies only upon the summary statistics

$$
S_{1}=\bar{x} \quad S_{2}=\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}
$$

and so we observe exchangeability.

```
n<-10
sim.exch02<-function(nv){ #Sample the exchangeable variables.
    Tv<-rnorm(1)
    Xv<-rnorm(nv,Tv,1)
}
Xmat<-t(replicate(2000,sim.exch02(n))) #10000 replicate draws of S
dim(Xmat)
+ [1] 2000 10
```

par(pty='s')
pairs (Xmat [, 1:5] , pch=19, cex=0.5,
labels=c (expression(X[1]), expression(X[2]), expression(X[3]), expression(X[4]), expression(X[5])))

pairs(Xmat [, 6:10], pch=19, cex=0.5,
labels=c (expression(X[6]), expression(X [7]), expression(X [8]),
expression(X[9]), expression(X[10])))

We have that for $j=1, \ldots, n$,

$$
\mathbb{E}_{X_{j}}\left[X_{j}\right]=0 \quad \operatorname{Var}_{X_{j}}\left[X_{j}\right]=2
$$

```
apply(Xmat, 2,mean)
```

$+[1]-0.039762526-0.052441837-0.019957830-0.031307409-0.016080719$
$+[6]-0.032508626 \quad 0.012736473 \quad 0.005388054 \quad 0.004598635-0.050503142$
apply(Xmat,2, var)

+ [1] 2.0882591 .8684502 .0020852 .0242411 .9990732 .0539811 .942118
+ [8] 1.9374802 .0344341 .890146

Also, for the covariances, using iterated expectation we have

$$
\operatorname{Cov}_{X_{j}, X_{k}}\left[X_{j}, X_{k}\right] \equiv \mathbb{E}_{X_{j}, X_{k}}\left[X_{j} X_{k}\right]=\mathbb{E}_{T}\left[\mathbb{E}_{X_{j}, X_{k} \mid T}\left[X_{j} X_{k} \mid T\right]\right]=\mathbb{E}_{T}\left[\mathbb{E}_{X_{j} \mid T}\left[X_{j} \mid T\right] \mathbb{E}_{X_{k} \mid T}\left[X_{k} \mid T\right]\right]
$$

as X_{j} and X_{k} have expectation zero, and are conditionally independent given T. Thus, as $\mathbb{E}_{X_{j} \mid T}\left[X_{j} \mid T\right]=T$ for each j, we have

$$
\operatorname{Cov}_{X_{j}, X_{k}}\left[X_{j}, X_{k}\right]=\mathbb{E}_{T}\left[T^{2}\right]=1
$$

and hence

$$
\operatorname{Corr}_{X_{j}, X_{k}}\left[X_{j}, X_{k}\right]=\frac{\operatorname{Cov}_{X_{j}, X_{k}}\left[X_{j}, X_{k}\right]}{\sqrt{\operatorname{Var}_{X_{j}}\left[X_{j}\right] \operatorname{Var}_{X_{k}}\left[X_{k}\right]}}=\frac{1}{2} .
$$

round(cor(Xmat),3)											
+		$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$
+	$[1]$,	1.000	0.503	0.525	0.488	0.492	0.495	0.504	0.489	0.495	0.507
+	$[2]$,	0.503	1.000	0.497	0.498	0.483	0.488	0.498	0.471	0.504	0.485
+	$[3]$,	0.525	0.497	1.000	0.506	0.509	0.526	0.478	0.491	0.482	0.482
+	$[4]$,	0.488	0.498	0.506	1.000	0.464	0.479	0.489	0.489	0.485	0.498
+	$[5]$,	0.492	0.483	0.509	0.464	1.000	0.484	0.476	0.457	0.488	0.469
+	$[6]$,	0.495	0.488	0.526	0.479	0.484	1.000	0.474	0.505	0.490	0.514
+	$[7]$,	0.504	0.498	0.478	0.489	0.476	0.474	1.000	0.485	0.485	0.498
+	$[8]$,	0.489	0.471	0.491	0.489	0.457	0.505	0.485	1.000	0.475	0.498
+	$[9]$,	0.495	0.504	0.482	0.485	0.488	0.490	0.485	0.475	1.000	0.492
+	$[10]$,	0.507	0.485	0.482	0.498	0.469	0.514	0.498	0.498	0.492	1.000

