MATH 556: Mathematical Statistics I
 Random Number Generation and Monte Carlo

Many functions exist in R to produce random samples from probability distributions.

```
n<-10
args(rnorm)
+ function (n, mean = 0, sd = 1)
+ NULL
rnorm(n,5,sqrt(4)) #sample from Normal (5,4)
+ [1] 7.223009 5.240500 4.715339 4.594866 4.236323 5.163522 5.529968
+ [8] 6.540460 6.992879 8.077577
args(rgamma)
+ function (n, shape, rate = 1, scale = 1/rate)
+ NULL
rgamma(n,2,0.5) #sample from Gamma(2,0.5)
+[1] 1.0254782 0.5505856 0.9760013 2.9239228 1.2410966 2.3960980 3.8044358
+ [8] 8.9222620 2.8087903 1.8083036
args(rpois)
+ function (n, lambda)
+ NULL
rpois(n,3.5) #sample from Poisson(3.5)
+[1] 7 3 3 5 0 4 14 2 1
args(sample)
+ function (x, size, replace = FALSE, prob = NULL)
+ NULL
sample(c(1:100),n,replace=T) #sample discrete uniform on {1,2,\ldots.,100} with replacement
+[1] 2 50 7 36 41 99 5 25 79 30
sample(c(1:100),n,replace=F) #sample discrete uniform on {1,2,\ldots,100| without replacement
+ [1] 99 48 26 98 75 70 36 68 17 61
sample(c(1:5),n,replace=T,prob=c(0.2,0.1,0.4,0.1,0.2)) #sample discrete distn on {1,2,\ldots,5}
+[1] 2 3 5 3 3 5 1 3 2 2
```

The set.seed() function can be used to make the random draws reproducible

```
set.seed(8910)
rnorm(5);rnorm(5)
+[1] 0.8214213 0.6982410 -0.3845740 1.3006786 1.4397298
+[1] 0.02488985 0.69435700 0.32589669 -1.19616616 0.61756331
set.seed(8910)
rnorm(5)
+[1] 0.8214213 0.6982410 -0.3845740 1.3006786 1.4397298
```

Random samples can be used for several purposes in basic distribution theory.

- Visualization: $X \sim W \operatorname{eibull}(\alpha, \beta)$

$$
f_{X}(x)=\alpha \beta x^{\alpha-1} \exp \left\{-\beta x^{\alpha}\right\} \quad x>0
$$

and zero otherwise, for $\alpha>0$ and $\beta>0$. Parameter α is the shape parameter, and β controls the dispersion of the distribution. An alternative parameterization utilizes the scale parameter $\sigma=1 / \beta^{1 / \alpha}$ yielding pdf

$$
f_{X}(x)=\frac{\alpha}{\sigma}\left(\frac{x}{\sigma}\right)^{\alpha-1} \exp \left\{-\left(\frac{x}{\sigma}\right)^{\alpha}\right\} \quad x>0
$$

This is the parameterization that R uses. The expectation of this distribution is

$$
\mathbb{E}_{X}[X]=\frac{\Gamma\left(1+\frac{1}{\alpha}\right)}{\beta^{1 / \alpha}}=\sigma \Gamma\left(1+\frac{1}{\alpha}\right) .
$$

```
set.seed(8910)
n<-10000
args(rweibull)
+ function (n, shape, scale = 1)
+ NULL
al<-2;be<-4
sig<-1/be^{1/al}
X<-rweibull(n,al,sig)
par(mar=c (4,3,1,0))
hist(X,breaks=seq(0, 2, by=0.05) ,main=' ',ylim=range(0, 1000));box()
x<-seq(0,2,by=0.001)
fx<-dweibull(x,al,sig)
lines(x,fx*n*0.05,col='red')
```



```
sig*gamma(1+1/al) #Expectation
+ [1] 0.4431135
mean(X) #Sample mean
+ [1] 0.4425448
```

- Transformations: If $U \sim \operatorname{Uniform}(0,1)$, then

$$
X=\left(-\frac{1}{\beta} \log (1-U)\right)^{1 / \alpha}
$$

ensures that $X \sim W \operatorname{eibull}(\alpha, \beta)$

```
set.seed(8910)
n<-10000
U<-runif(n)
X<-(-log(1-U)/be)^(1/al)
par(mar=c(4,3,1,0))
hist(X,breaks=seq(0, 2, by=0.05),main=' ' ,ylim=range(0, 1000)) ;box()
lines(x,fx*n*0.05,col='red')
```



```
sig*gamma(1+1/al) #Expectation
+ [1] 0.4431135
mean(X)
#Sample mean
+ [1] 0.4448699
```

Multivariate transformations can also be studied. Suppose that U_{1} and U_{2} are independent $\operatorname{Uniform}(0,1)$ variables, and consider

$$
X_{1}=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right) \quad X_{2}=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)
$$

We may use the multivariate transformation theorem to demonstrate that X_{1} and X_{2} are independent $\operatorname{Normal}(0,1)$ variables.

```
set.seed(8910)
n<-10000
U1<-runif(n);U2<-runif(n)
X1<-sqrt(-2*log(U1))*cos(2*pi*U2)
X2<-sqrt(-2*log(U1))*sin(2*pi*U2)
par(mar=c(4,3,1,0))
mean(X1);var(X1)
+ [1] -0.0005129991
+ [1] 0.9711766
```

```
mean(X2);var(X2)
+ [1] -0.007057369
+ [1] 1.029527
cov(X1,X2)
+ [1] 0.001159726
par(mar=c (4,4,1,2),mfrow=c (1,2))
plot(U1,U2,xlim=range(0,1),ylim=range(0,1),pch=19, cex=0.3)
plot(X1,X2, xlim=range(-4.5,4.5),ylim=range(-4.5,4.5), pch=19, cex=0.3)
```


$x<-\operatorname{seq}(-4.5,4.5$, by $=0.001)$
fx<-dnorm(x)
hist (X1, breaks=seq $(-4.5,4.5, b y=0.25)$,main=' ' ,ylim=range $(0,1000)$) ;box () lines($x, f x * n * 0.25, c o l=' r e d ')$
hist (X2, breaks=seq ($-4.5,4.5$, by=0.25) ,main=' ' ,ylim=range $(0,1000)$) ;box ()
lines ($\mathrm{x}, \mathrm{fx} * \mathrm{n} * 0.25$, col='red')

It is also straightforward to study non 1-1 transformations: suppose $X_{1}, X_{2} \sim \operatorname{Exponential}(1)$ are independent. We have seen that

$$
Y=X_{1}-X_{2}
$$

has a Double Exponential (or Laplace) distribution, with

$$
f_{Y}(y)=\frac{1}{2} \exp \{-|y|\} \quad y \in \mathbb{R}
$$

```
set.seed(8910)
n<-10000
X1<-rexp(n)
X2<-rexp(n)
Y<-X1-X2
par(mar=c (4, 3, 1, 0))
y<-seq}(-10,10, by=0.001
fy<-0.5*exp (-abs (y))
hist(Y, breaks=seq(-10, 10, by=0.25),main=' ' , ylim=range(0, 1500)) ; box()
lines(y,fy*n*0.25,col='red')
```


This can be useful when the analytical calculation is less straightforward: suppose $X_{1}, X_{2} \sim \operatorname{Gamma}(\alpha, 1)$ are independent. We can study the distribution of

$$
Y=X_{1}-X_{2}
$$

easily using simulation. By direct but more involved calculation, we can demonstrate that, if α is a positive integer, say $\alpha=r+1$ for $r=0,1,2, \ldots$, then

$$
f_{Y}(y)=\sum_{j=0}^{r}\binom{r}{j} \frac{\Gamma(r+j+1)}{\{\Gamma(r+1)\}^{2}} \frac{1}{2^{r+j+1}}|y|^{r-j} \exp \{-|y|\} \quad y \in \mathbb{R}
$$

To see this, consider the case $y>0$ and note that

$$
P_{Y}[Y>y]=P_{X_{1}, X_{2}}\left[X_{1}-X_{2}>y\right]=\int_{0}^{\infty} \int_{x_{2}+y}^{\infty} f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{1} d x_{2}
$$

From this we compute the density by noting that $F_{Y}(y)=1-P_{Y}[Y>y]$, and differentiating with respect to y under the first integral: the differentiation is facilitated using the fundamental law of calculus. This yields, for $y>0$

$$
f_{Y}(y)=\frac{1}{\{\Gamma(\alpha)\}^{2}} e^{-y} \int_{0}^{\infty}\left(x_{2}\left(x_{2}+y\right)\right)^{\alpha-1} \exp \left\{-2 x_{2}\right\} d x_{2}
$$

To compute this integral for $\alpha=r+1$ an integer, we use the binomial expansion

$$
\left(x_{2}+y\right)^{r}=\sum_{j=0}^{r}\binom{r}{j} x_{2}^{j} y^{r-j}
$$

and then integrate term-by-term. We have that

$$
\int_{0}^{\infty} x_{2}^{r+j} \exp \left\{-2 x_{2}\right\} d x_{2}=\frac{\Gamma(r+j+1)}{2^{r+j+1}}
$$

as the integrand is proportional to a $\operatorname{Gamma}(r+j+1,2)$ pdf. The result follows. Note that the pdf is symmetric about zero as we must have that the distribution of $X_{1}-X_{2}$ is identical to the distribution of $X_{2}-X_{1}$.

```
set.seed(8910)
n<-10000
al<-4
r<-al-1
X1<-rgamma(n,al, 1)
X2<-rgamma(n,al, 1)
Y<-X1-X2
par(mar=c(4, 3, 1, 0))
y<-seq(-15,15, by=0.001)
ay<-abs(y)
fy<-y*0
for(j in 0:r){
    fy<-fy+choose(r,j)*(gamma(r+j+1)/gamma(r+1)^2)*(2^(-(r+j+1)))*ay^(r-j)*exp(-ay)
}
hist(Y,breaks=seq(-15,15, by=0.5),main='' , ylim=range(0, 1000)); box()
lines(y,fy*n*0.5,col='red')
```


- Monte Carlo: The general principle of Monte Carlo is that the availability of random samples from a distribution $F_{X}(x)$ is essentially equivalent to knowledge of F_{X} itself if the number of samples is large enough. Suppose X_{1}, \ldots, X_{n} are independent rvs having the same cdf F_{X}. We may approximate F_{X} itself using the empirical distribution function, \widehat{F}_{n}, defined by

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{[x, \infty)}\left(X_{i}\right) \equiv \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left(-\infty, X_{i}\right]}(x) \quad x \in \mathbb{R}
$$

which, for any fixed x, records the fraction of the $X_{i} \mathrm{~s}$ that are greater than or equal to x. If n is large enough, we can show that $\widehat{F}_{n}(x)$, when computed with simulated sample values x_{1}, \ldots, x_{n}, closely approximates $F_{X}(x)$. Thus we may also approximate the expectation

$$
\mathbb{E}_{X}[g(X)]=\int_{-\infty}^{\infty} g(x) d F_{X}(x)
$$

by the sample average

$$
\widehat{\mathbb{E}}_{X}[g(X)]=\int_{-\infty}^{\infty} g(x) d \widehat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)
$$

This is the same principle that we use in statistical inference when we use the sample mean, sample variance etc. from a data sample to estimate the theoretical mean and variance etc. The discrete distribution

$$
\widehat{f}_{n}(x)=\sum_{i=1}^{n} \frac{1}{n} \mathbb{1}_{\{x\}}\left(X_{i}\right)=\sum_{i=1}^{n} \frac{1}{n} \mathbb{1}_{\left\{X_{i}\right\}}(x)
$$

with masses $1 / n$ placed at the $X_{i} \mathrm{~s}$ is used to approximate the $\mathrm{pmf} / \mathrm{pdf}$ of X.
In the previous example, with X_{1} and X_{2} independent $\operatorname{Gamma}(\alpha, 1)$, we may compute the variance of $Y=X_{1}-X_{2}$ directly as $\operatorname{Var}_{Y}[Y]=\operatorname{Var}_{X_{1}}\left[X_{1}\right]+\operatorname{Var}_{X_{2}}\left[X_{2}\right]=\alpha+\alpha=2 \alpha$, and approximate it by Monte Carlo as follows:

```
var(Y) #sample variance
+ [1] 7.809462
2*al #theoretical variance.
+ [1] 8
```

Note that because the values are randomly drawn, we will get slightly different numerical results each time. For 10 replicate runs, we get

```
vvec<-replicate(10,var(rgamma(n,al, 1)-rgamma(n,al, 1)))
vvec
+[1] 8.007298 7.952201 8.030130 8.125803 7.950684 7.839052 7.800716
+ [8] 7.868360 8.265122 8.025022
```

If the sample size is increased, the variation becomes smaller.

```
n<-n*10
vvec<-replicate(10,var(rgamma(n,al,1)-rgamma(n,al, 1)))
vvec
+[1] 7.995375 8.042749 8.109641 7.949860 8.025333 7.962438 8.046584
+ [8] 8.060480 7.964145 7.999656
n<-n*10
vvec<-replicate(10, var(rgamma(n,al, 1)-rgamma(n,al, 1)))
vvec
+[1] 7.978249 8.001125 8.017460 7.996612 7.992621 7.995561 7.998518
+ [8] 7.987549 8.002257 8.016414
```

Monte Carlo methods are most often used when there are no straightforward analytic results available. Suppose we have that

$$
g(x)=\max \{2|x| \log |x|, 5\}
$$

Then

$$
\widehat{\mathbb{E}}_{X}[g(X)]=\frac{1}{n} \sum_{i=1}^{n} \max \left\{2\left|x_{i}\right| \log \left|x_{i}\right|, 5\right\}
$$

where x_{1}, \ldots, x_{n} are drawn from f_{X}.

```
n<-100000
ecalc<-function(nv,av){
    xv<-rgamma(nv,av,1)-rgamma(nv,av,1)
    gxv<-pmax(2*abs(xv)*log(abs(xv)),5)
    return(mean(gxv))
}
gvec<-replicate(10,ecalc(n,al))
gvec
+ [1] 7.582499 7.545870 7.584154 7.558610 7.548019 7.568509 7.548397
+ [8] 7.592875 7.595055 7.542022
```

An extension to basic Monte Carlo is importance sampling: we have that

$$
\mathbb{E}_{X}[g(X)]=\int_{-\infty}^{\infty} g(x) \frac{d F_{X}(x)}{d F_{0}(x)} d F_{0}(x)
$$

where F_{0} is some other distribution, provided the quantity

$$
\frac{d F_{X}(x)}{d F_{0}(x)} \equiv \frac{f_{X}(x)}{f_{0}(x)}
$$

is well-defined and finite on the support of X. Thus we may write

$$
\mathbb{E}_{X}[g(X)]=\mathbb{E}_{0}\left[g(X) \frac{f_{X}(X)}{f_{0}(X)}\right]
$$

that is, as an expectation with respect to f_{0}.

Cautionary note: Monte Carlo is a powerful technique, but it is not suitable for solving all problems. Consider computing the (Riemann) integral

$$
\int_{0}^{1} \frac{1}{x} \sin (2 \pi / x) d x
$$

by Monte Carlo. This involves sampling $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0,1)$ independently, and then computing

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}} \sin \left(2 \pi / x_{i}\right)
$$

The Riemann integral can be computed as

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x} \sin (2 \pi / x) d x=\int_{1}^{\infty} \frac{\sin (2 \pi t)}{t} d t & =\int_{0}^{\infty} \frac{\sin (t)}{t} d t-\int_{0}^{2 \pi} \frac{\sin (t)}{t} d t \\
& =\operatorname{Si}(\infty)-\operatorname{Si}(2 \pi)
\end{aligned}
$$

where $\operatorname{Si}($.$) is a special function (the sine integral) with \operatorname{Si}(\infty)=\pi / 2$. The numerical value of the integral is 0.1526 .

```
library(pracma)
Si(10^6)-Si(2*pi) #Riemann integral result
+ [1] 0.1526438
sincalc<-function(nv){
    xv<-runif(nv)
    return(mean(sin(2*pi/xv)/xv))
}
svec<-replicate(20,sincalc(n)) #Monte Carlo replicates
svec
+[1] 6.2222875 -5.3297809 1.1591927 -1.0311998 1.0686836 -0.2439774
+ [7] -1.5354914 0.4194717 0.9593114 -0.5984831 15.6722360 6.8136477
+[13] 1.1831975 0.4768715 -1.0018140 1.8673244 0.4550503-0.0316202
+ [19] 0.3104977 -4.7483663
```

The problem is that if $X \sim \operatorname{Uniform}(0,1)$

$$
\mathbb{E}_{X}\left[\frac{1}{X} \sin \left(\frac{2 \pi}{X}\right)\right]
$$

is not defined. Specifically

$$
\mathbb{E}_{X}\left[\left|\frac{1}{X} \sin \left(\frac{2 \pi}{X}\right)\right|\right]
$$

is not finite.

