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1. (a) From first principles (univariate transformation theorem also acceptable): for y ∈ R

FY (y) = P [Y ≤ y] = Pr

[
log

(
X

1−X

)
≤ y

]
= Pr

[
X ≥ ey

1 + ey

]
=

ey

1 + ey

and therefore

fY (y) =
ey

(1 + ey)2
y ∈ R

and zero otherwise. By inspection this expectation is finite, and the pdf is symmetric around zero, so the
expectation is equal to zero.

6 MARKS

(b) From first principles (univariate transformation theorem also acceptable): for z ∈ (0, 1/4)

FZ(z) = Pr [Z ≤ z] = Pr [X(1−X) ≤ z] = Pr [x1(z) ≥ X ≥ x2(z)]

where x1(z) and x2(z) are the roots of the quadratic

x2 − x + z = 0

that is

x1(z) =
1−√1− 4z

2
x2(z) =

1 +
√

1− 4z

2
.

Hence
FZ(z) =

√
1− 4z 0 < z < 1/4.

and therefore

fY (y) =
2√

1− 4z
0 < z < 1/4

and zero otherwise. For the expectation, using the Beta integral

EfZ
[Z] = EfX

[X(1−X)] =
∫ 1

0

x(1− x) dx =
1
2
− 1

3
=

1
6

6 MARKS

(c)

Pr

[
X1X2 >

1
2

]
=

∫ 1

1/2

∫ 1

1/(2x1)

dx2 dx1 =
∫ 1

1/2

(1− 1/(2x1)) dx1 =
[
x− 1

2
log x1

]1

1/2

Hence

Pr

[
X1X2 >

1
2

]
=

(
1− 1

2
log 1

)
−

(
1
2
− 1

2
log

1
2

)
=

1
2
− 1

2
log 2

As the distributions of X1 and 1−X1 are identical, we also have

Pr

[
(1−X1)(1−X2) >

1
2

]
=

1
2
− 1

2
log 2

8 MARKS
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2. (a) Using the multivariate transformation theorem

(a) We have that Z(2) ≡ R× R, and

g1(t1, t2) =
t1
t2

g2(t1, t2) = t1 + t2

(b) Inverse transformations:

X1 =
Z1

Z2

X2 = Z1 + Z2




⇔





Z1 =
X1X2

1 + X1

Z2 =
X2

1 + X1

and thus
g−1
1 (t1, t2) = t1t2/(1 + t1) g−1

2 (t1, t2) = t2/(1 + t1)

(c) Range: straightforwardly we have that X(2) ≡ R× R
(d) The Jacobian for points (x1, x2) ∈ Y(2) is

Dx1,x2 =




∂z1

∂x1

∂z1

∂x2

∂z2

∂x1

∂z2

∂x2


 =




x2

(1 + x1)2
x1

(1 + x1)

− x2

(1 + x1)2
1

(1 + x1)


 ⇒ |J (x1, x2)| = |x2|

(1 + x1)2

(e) For the joint pdf we have for (x1, x2) ∈ Y(2), bx independence of Z1 and Z2

fX1,X2 (x1, x2) = fZ1,Z2

(
x1x2

1 + x1
,

x2

1 + x1

)
× |x2|

(1 + x1)2
=

1
2π

|x2|
(1 + x1)2

exp
{
−1

2

[
x2

2(1 + x2
1)

2(1 + x1)2

]}

8 MARKS

(b) To get the marginal for X1, we integrate out X2;

fX1(x1) =
1
2π

1
(1 + x1)2

∫ ∞

−∞
|x2| exp

{
−x2

2(1 + x2
1)

2(1 + x1)2

}
dx

=
1
π

1
(1 + x1)2

∫ ∞

0

x2 exp
{
−x2

2(1 + x2
1)

2(1 + x1)2

}
dx

=
1
π

1
(1 + x1)2

[
− (1 + x1)2

(1 + x2
1)

exp
{
−x2

2(1 + x2
1)

2(1 + x1)2

}]∞

0

=
1
π

1
1 + x2

1

so X1 ∼ Cauchy.

4 MARKS

(c) The covariance between random variables Y1 and Y2 is

CovfY1,Y2
[Y1, Y2] = EfY1,Y2

[Y1Y2]− EfY1
[Y1]EfY2

[Y2] ≡ EfZ1
[Z5

1 ]− EfZ1
[Z2

1 ]EfZ1
[Z3

1 ] = 0

as the odd moments of the standard normal are zero.

4 MARKS

(d) Find the mgf of V is

MV (t) = EfV [etV ] = EfZ1,Z2
[exp{t(αZ1 + βZ2)}] = MZ1(αt)MZ2(βt) = exp{(α2 + β2)t2/2}

4 MARKS
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3. (a) By inspection

CX(t) = EfX
[eitX ] =

1
2σ

∫ ∞

−∞
eitxλe−|x/σ| dx

But fX is symmetric about zero, so

CX(t) =
1
σ

∫ ∞

0

cos(tx)e−x/σ dx =
∫ ∞

0

cos(sy)e−y dy

where s = σt, after changing from x to y = x/σ. Integrating by parts yields

CX(t) =
1

1 + σ2t2

as

CX(t) =
∫ ∞

0

cos(ty)e−y dy =
[− cos(ty)e−y

]∞
0
−

∫ ∞

0

t sin(ty)e−y dy

= 1− t
[
sin(ty)e−y

]∞
0
− t

∫ ∞

0

t cos(ty)e−y dy = 1− t2CX(t)

8 MARKS

(b) (i) X1, . . . , Xn are continuous random variables, as |CX(t)| −→ 0 as t −→∞
2 MARKS

(ii) For the distribution to be infinitely divisible, the function

{exp{−|t|α}}1/n = exp
{
−

∣∣∣∣
t

n1/α

∣∣∣∣
α}

needs to be a valid cf for a probability distribution, for all n. But clearly this cf is the cf of the
scale transformed random variable Y1 = n1/αX1. So the distribution of the X variables is infinitely
divisible.

4 MARKS

(iii) We have by elementary cf results that

CTn(t) = eanit{CX(bnt)}n = eanit {exp{−n|bnt|α}} = eanit {exp{−n|bn|α|t|α}}

Thus we must have an = 0 (as CX(t) is entirely real) and

bn = n−1/α

6 MARKS
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4. This question is bookwork:

(a) Chebychev Lemma: If X is a random variable, then for non-negative function h, and c > 0,

Pr [h(X) ≥ c] ≤ EfX [h(X)]
c

Suppose that X has density function fX which is positive for x ∈ X. Let A = {x ∈ X : h(x) ≥ c} ⊆ X.
Then, as h(x) ≥ c on A,

EfX
[h(X)] =

∫
h(x)fX(x) dx =

∫

A

h(x)fX(x) dx +
∫

A′
h(x)fX(x) dx

≥
∫

A

h(x)fX(x) dx

≥
∫

A

cfX(x) dx = c Pr [X ∈ A] = c Pr [h(X) ≥ c]

and the result follows.

Using the Chebychev Lemma with h(x) = etx and c = eat, for t > 0,

P [X ≥ a] = P [tX ≥ at] = P [exp{tX} ≥ exp{at}] ≤ EfX [etX ]
eat

=
MX(t)

eat

10 MARKS

(b) MINKOWSKI’S INEQUALITY : Suppose that X and Y are two random variables, and 1 ≤ p < ∞.
Then {

EfX,Y
[|X + Y |p]}1/p ≤ {EfX

[|X|p]}1/p + {EfY
[|Y |p]}1/p

Proof. Write

EfX,Y [|X + Y |p] = EfX,Y [|X + Y ||X + Y |p−1]

≤ EfX,Y
[|X||X + Y |p−1] + EfX,Y

[|Y ||X + Y |p−1]

by the triangle inequality |x + y| ≤ |x| + |y|. Using Hölder’s Inequality on the terms on the right hand
side, for q selected to satisfy 1/p + 1/q = 1,

EfX,Y [|X+Y |p] ≤ {EfX [|X|p]}1/p
{

EfX,Y [|X + Y |q(p−1)]
}1/q

+{EfY [|Y |p]}1/p
{

EfX,Y [|X + Y |q(p−1)]
}1/q

and dividing through by
{
EfX,Y [|X + Y |q(p−1)]

}1/q
yields

EfX,Y [|X + Y |p]
{
EfX,Y

[|X + Y |q(p−1)]
}1/q

≤ {EfX [|X|p]}1/p + {EfY [|Y |p]}1/p

and the result follows as q(p− 1) = p, and 1− 1/q = 1/p.

10 MARKS
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5. (a) (i) A natural Exponential Family has k = 1 and takes the form

fX(x|η) = h(x)c?(η) exp {ηx}

where η is the natural parameter. 5 MARKS

(ii) Let S(X; η) be defined by

S(X; η) =
d

dη
log fX(X; η) =

d

dη
{log c?(η)}+ X

This is the score function, and we know that EfX
[S(X; η)] = 0, so therefore

0 =
d

dη
{log c?(η)}+ EfX

[X] ∴ EfX
[X] = − d

dη
{log c?(η)}

5 MARKS

(iii) By the univariate transformation theorem

fY (y|α) =
1

Γ(α)

(
1
y

)α+1

exp
{
−1

y

}
x > 0

Thus, if η = −(α + 1), we have for x ∈ R

fY (y|η) = I(0,∞)(y) exp
{
−1

y

}
1

Γ(−1− η)
exp{η log y}

so this is an Exponential Family distribution with natural parameter η = −(α + 1).
4 MARKS

(b) Without loss of generality, consider X1 and X2. By iterated expectation

EfX1
[X1] = EfM

[
EfX1|M

[X1|M = m]
]

= EfM
[M ] = µ

EfX1
[X2

1 ] = EfM

[
EfX1|M

[X2
1 |M = m]

]
= EfM

[
M2 + σ2

]
= µ2 + τ2 + σ2

so that
V arfX1

[X1] = EfX1
[X2

1 ]− {EfX1
[X1]}2 = τ2 + σ2.

By symmetry EfX2
[X2] = µ and V arfX2

[X2] = τ2 + σ2. Now,

EfX1,X2
[X1X2] = EfM

[
EfX1,X2|M

[X1X2|M = m]
]

= EfM

[
EfX1|M

[X1|M = m]×EfX2|M
[X2|M = m]

]

by conditional independence. Therefore

EfX1,X2
[X1X2] = EfM [M ×M ] = EfM

[
M2

]
= µ2 + τ2

Hence
CovfX1,X2

[X1, X2] = EfX1,X2
[X1X2]− EfX1

[X1]EfX2
[X2] = µ2 + τ2 − µ2 = τ2

But this pairwise result holds for all pairs i, j, so the variance-covariance matrix takes the form

Σij =

{
τ2 + σ2 i = j

τ2 i 6= j

6 MARKS
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6. (a) For 0 < x < ∞,

FXn(x) =
(

nλx

1 + nλx

)n

=
(

1 +
1

nλx

)−n

−→ exp{−1/(λx)} = FX(x)

as n −→∞.

6 MARKS

(b) We have, from the extreme order statistics result

FZn(z) = 1− {1− FX(z)}n

so that for z ≥ 1

FZn
(z) = 1− 1

zn
−→

{
0 z < 1

1 z ≥ 1

as n −→∞, so the distribution is degenerate at z = 1. Now, if Un = (Zn)αn , then if αn = 1/n,

FUn
(u) = Pr[Un ≤ u] = Pr[(Zn)αn ≤ u] = Pr[Zn ≤ u1/αn ] = 1− 1

u
u ≥ 1.

8 MARKS

(c) From the formula sheet

EfX
[X] =

1
λ

V arfX
[X] =

1
λ2

and so from the Central Limit Theorem

√
n(Xn − 1/λ)

1/λ

d−→ Z ∼ N(0, 1)

or, for large finite n

Xn ∼ AN(1/λ, 1/(nλ2))

Now, using the Delta Method with function g(x) = e−1/x, and c = 1/λ, we have

ġ(x) =
e−1/x

x2
∴ ġ(c) = λ2e−λ

and therefore for large finite n

Tn ∼ AN(e−λ, λ2e−2λ/n).

6 MARKS
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