McGill University
 Faculty of Science
 Department of Mathematics and Statistics

December 2007

MATH 556

MATHEMATICAL STATISTICS I

SOLUTIONS

1. (a) From first principles (univariate transformation theorem also acceptable): for $y \in \mathbb{R}$

$$
F_{Y}(y)=P[Y \leq y]=\operatorname{Pr}\left[\log \left(\frac{X}{1-X}\right) \leq y\right]=\operatorname{Pr}\left[X \geq \frac{e^{y}}{1+e^{y}}\right]=\frac{e^{y}}{1+e^{y}}
$$

and therefore

$$
f_{Y}(y)=\frac{e^{y}}{\left(1+e^{y}\right)^{2}} \quad y \in \mathbb{R}
$$

and zero otherwise. By inspection this expectation is finite, and the pdf is symmetric around zero, so the expectation is equal to zero.

6 MARKS
(b) From first principles (univariate transformation theorem also acceptable): for $z \in(0,1 / 4)$

$$
F_{Z}(z)=\operatorname{Pr}[Z \leq z]=\operatorname{Pr}[X(1-X) \leq z]=\operatorname{Pr}\left[x_{1}(z) \geq X \geq x_{2}(z)\right]
$$

where $x_{1}(z)$ and $x_{2}(z)$ are the roots of the quadratic

$$
x^{2}-x+z=0
$$

that is

$$
x_{1}(z)=\frac{1-\sqrt{1-4 z}}{2} \quad x_{2}(z)=\frac{1+\sqrt{1-4 z}}{2}
$$

Hence

$$
F_{Z}(z)=\sqrt{1-4 z} \quad 0<z<1 / 4
$$

and therefore

$$
f_{Y}(y)=\frac{2}{\sqrt{1-4 z}} \quad 0<z<1 / 4
$$

and zero otherwise. For the expectation, using the Beta integral

$$
E_{f_{Z}}[Z]=E_{f_{X}}[X(1-X)]=\int_{0}^{1} x(1-x) d x=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

6 MARKS
(c)

$$
\operatorname{Pr}\left[X_{1} X_{2}>\frac{1}{2}\right]=\int_{1 / 2}^{1} \int_{1 /\left(2 x_{1}\right)}^{1} d x_{2} d x_{1}=\int_{1 / 2}^{1}\left(1-1 /\left(2 x_{1}\right)\right) d x_{1}=\left[x-\frac{1}{2} \log x_{1}\right]_{1 / 2}^{1}
$$

Hence

$$
\operatorname{Pr}\left[X_{1} X_{2}>\frac{1}{2}\right]=\left(1-\frac{1}{2} \log 1\right)-\left(\frac{1}{2}-\frac{1}{2} \log \frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2} \log 2
$$

As the distributions of X_{1} and $1-X_{1}$ are identical, we also have

$$
\operatorname{Pr}\left[\left(1-X_{1}\right)\left(1-X_{2}\right)>\frac{1}{2}\right]=\frac{1}{2}-\frac{1}{2} \log 2
$$

2. (a) Using the multivariate transformation theorem
(a) We have that $\mathbb{Z}^{(2)} \equiv \mathbb{R} \times \mathbb{R}$, and

$$
g_{1}\left(t_{1}, t_{2}\right)=\frac{t_{1}}{t_{2}} \quad g_{2}\left(t_{1}, t_{2}\right)=t_{1}+t_{2}
$$

(b) Inverse transformations:

$$
\left.\begin{array}{l}
X_{1}=\frac{Z_{1}}{Z_{2}} \\
X_{2}=Z_{1}+Z_{2}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
Z_{1}=\frac{X_{1} X_{2}}{1+X_{1}} \\
Z_{2}=\frac{X_{2}}{1+X_{1}}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} /\left(1+t_{1}\right) \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2} /\left(1+t_{1}\right)
$$

(c) Range: straightforwardly we have that $\mathbb{X}^{(2)} \equiv \mathbb{R} \times \mathbb{R}$
(d) The Jacobian for points $\left(x_{1}, x_{2}\right) \in \mathbb{Y}^{(2)}$ is

$$
D_{x_{1}, x_{2}}=\left[\begin{array}{ll}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} \\
\frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{x_{2}}{\left(1+x_{1}\right)^{2}} & \frac{x_{1}}{\left(1+x_{1}\right)} \\
-\frac{x_{2}}{\left(1+x_{1}\right)^{2}} & \frac{1}{\left(1+x_{1}\right)}
\end{array}\right] \Rightarrow\left|J\left(x_{1}, x_{2}\right)\right|=\frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}}
$$

(e) For the joint pdf we have for $\left(x_{1}, x_{2}\right) \in \mathbb{Y}^{(2)}$, bx independence of Z_{1} and Z_{2}

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{Z_{1}, Z_{2}}\left(\frac{x_{1} x_{2}}{1+x_{1}}, \frac{x_{2}}{1+x_{1}}\right) \times \frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}}=\frac{1}{2 \pi} \frac{\left|x_{2}\right|}{\left(1+x_{1}\right)^{2}} \exp \left\{-\frac{1}{2}\left[\frac{x_{2}^{2}\left(1+x_{1}^{2}\right)}{2\left(1+x_{1}\right)^{2}}\right]\right\}
$$

8 MARKS
(b) To get the marginal for X_{1}, we integrate out X_{2};

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\frac{1}{2 \pi} \frac{1}{\left(1+x_{1}\right)^{2}} \int_{-\infty}^{\infty}\left|x_{2}\right| \exp \left\{-\frac{x_{2}^{2}\left(1+x_{1}^{2}\right)}{2\left(1+x_{1}\right)^{2}}\right\} d x \\
& =\frac{1}{\pi} \frac{1}{\left(1+x_{1}\right)^{2}} \int_{0}^{\infty} x_{2} \exp \left\{-\frac{x_{2}^{2}\left(1+x_{1}^{2}\right)}{2\left(1+x_{1}\right)^{2}}\right\} d x \\
& =\frac{1}{\pi} \frac{1}{\left(1+x_{1}\right)^{2}}\left[-\frac{\left(1+x_{1}\right)^{2}}{\left(1+x_{1}^{2}\right)} \exp \left\{-\frac{x_{2}^{2}\left(1+x_{1}^{2}\right)}{2\left(1+x_{1}\right)^{2}}\right\}\right]_{0}^{\infty}=\frac{1}{\pi} \frac{1}{1+x_{1}^{2}}
\end{aligned}
$$

so $X_{1} \sim$ Cauchy.
4 MARKS
(c) The covariance between random variables Y_{1} and Y_{2} is

$$
\operatorname{Cov}_{f_{Y_{1}, Y_{2}}}\left[Y_{1}, Y_{2}\right]=E_{f_{Y_{1}, Y_{2}}}\left[Y_{1} Y_{2}\right]-E_{f_{Y_{1}}}\left[Y_{1}\right] E_{f_{Y_{2}}}\left[Y_{2}\right] \equiv E_{f_{Z_{1}}}\left[Z_{1}^{5}\right]-E_{f_{Z_{1}}}\left[Z_{1}^{2}\right] E_{f_{Z_{1}}}\left[Z_{1}^{3}\right]=0
$$

as the odd moments of the standard normal are zero.
4 MARKS
(d) Find the mgf of V is

$$
M_{V}(t)=E_{f_{V}}\left[e^{t V}\right]=E_{f_{Z_{1}, Z_{2}}}\left[\exp \left\{t\left(\alpha Z_{1}+\beta Z_{2}\right)\right\}\right]=M_{Z_{1}}(\alpha t) M_{Z_{2}}(\beta t)=\exp \left\{\left(\alpha^{2}+\beta^{2}\right) t^{2} / 2\right\}
$$

3. (a) By inspection

$$
C_{X}(t)=E_{f_{X}}\left[e^{i t X}\right]=\frac{1}{2 \sigma} \int_{-\infty}^{\infty} e^{i t x} \lambda e^{-|x / \sigma|} d x
$$

But f_{X} is symmetric about zero, so

$$
C_{X}(t)=\frac{1}{\sigma} \int_{0}^{\infty} \cos (t x) e^{-x / \sigma} d x=\int_{0}^{\infty} \cos (s y) e^{-y} d y
$$

where $s=\sigma t$, after changing from x to $y=x / \sigma$. Integrating by parts yields

$$
C_{X}(t)=\frac{1}{1+\sigma^{2} t^{2}}
$$

as

$$
\begin{aligned}
C_{X}(t) & =\int_{0}^{\infty} \cos (t y) e^{-y} d y=\left[-\cos (t y) e^{-y}\right]_{0}^{\infty}-\int_{0}^{\infty} t \sin (t y) e^{-y} d y \\
& =1-t\left[\sin (t y) e^{-y}\right]_{0}^{\infty}-t \int_{0}^{\infty} t \cos (t y) e^{-y} d y=1-t^{2} C_{X}(t)
\end{aligned}
$$

(b) (i) X_{1}, \ldots, X_{n} are continuous random variables, as $\left|C_{X}(t)\right| \longrightarrow 0$ as $t \longrightarrow \infty$
(ii) For the distribution to be infinitely divisible, the function

$$
\left\{\exp \left\{-|t|^{\alpha}\right\}\right\}^{1 / n}=\exp \left\{-\left|\frac{t}{n^{1 / \alpha}}\right|^{\alpha}\right\}
$$

needs to be a valid of for a probability distribution, for all n. But clearly this cf is the cf of the scale transformed random variable $Y_{1}=n^{1 / \alpha} X_{1}$. So the distribution of the X variables is infinitely divisible.

4 MARKS
(iii) We have by elementary of results that

$$
C_{T_{n}}(t)=e^{a_{n} i t}\left\{C_{X}\left(b_{n} t\right)\right\}^{n}=e^{a_{n} i t}\left\{\exp \left\{-n\left|b_{n} t\right|^{\alpha}\right\}\right\}=e^{a_{n} i t}\left\{\exp \left\{-n\left|b_{n}\right|^{\alpha}|t|^{\alpha}\right\}\right\}
$$

Thus we must have $a_{n}=0$ (as $C_{X}(t)$ is entirely real) and

$$
b_{n}=n^{-1 / \alpha}
$$

4. This question is bookwork:
(a) Chebychev Lemma: If X is a random variable, then for non-negative function h, and $c>0$,

$$
\operatorname{Pr}[h(X) \geq c] \leq \frac{E_{f_{X}}[h(X)]}{c}
$$

Suppose that X has density function f_{X} which is positive for $x \in \mathbb{X}$. Let $\mathcal{A}=\{x \in \mathbb{X}: h(x) \geq c\} \subseteq X$. Then, as $h(x) \geq c$ on \mathcal{A},

$$
\begin{aligned}
E_{f_{X}}[h(X)]=\int h(x) f_{X}(x) d x & =\int_{\mathcal{A}} h(x) f_{X}(x) d x+\int_{\mathcal{A}^{\prime}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} c f_{X}(x) d x=c \operatorname{Pr}[X \in \mathcal{A}]=c \operatorname{Pr}[h(X) \geq c]
\end{aligned}
$$

and the result follows.
Using the Chebychev Lemma with $h(x)=e^{t x}$ and $c=e^{a t}$, for $t>0$,

$$
P[X \geq a]=P[t X \geq a t]=P[\exp \{t X\} \geq \exp \{a t\}] \leq \frac{E_{f_{X}}\left[e^{t X}\right]}{e^{a t}}=\frac{M_{X}(t)}{e^{a t}}
$$

10 MARKS
(b) MINKOWSKI'S INEQUALITY : Suppose that X and Y are two random variables, and $1 \leq p<\infty$. Then

$$
\left\{E_{f_{X, Y}}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

Proof. Write

$$
\begin{aligned}
E_{f_{X, Y}}\left[|X+Y|^{p}\right] & =E_{f_{X, Y}}\left[|X+Y||X+Y|^{p-1}\right] \\
& \leq E_{f_{X, Y}}\left[|X||X+Y|^{p-1}\right]+E_{f_{X, Y}}\left[|Y||X+Y|^{p-1}\right]
\end{aligned}
$$

by the triangle inequality $|x+y| \leq|x|+|y|$. Using Hölder's Inequality on the terms on the right hand side, for q selected to satisfy $1 / p+1 / q=1$,
$E_{f_{X, Y}}\left[|X+Y|^{p}\right] \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$
and dividing through by $\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$ yields

$$
\frac{E_{f_{X, Y}}\left[|X+Y|^{p}\right]}{\left\{E_{f_{X, Y}}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}} \leq\left\{E_{f_{X}}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{E_{f_{Y}}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

and the result follows as $q(p-1)=p$, and $1-1 / q=1 / p$.
5. (a) (i) A natural Exponential Family has $k=1$ and takes the form

$$
f_{X}(x \mid \eta)=h(x) c^{\star}(\eta) \exp \{\eta x\}
$$

where η is the natural parameter.
5 MARKS
(ii) Let $S(X ; \eta)$ be defined by

$$
S(X ; \eta)=\frac{d}{d \eta} \log f_{X}(X ; \eta)=\frac{d}{d \eta}\left\{\log c^{\star}(\eta)\right\}+X
$$

This is the score function, and we know that $E_{f_{X}}[S(X ; \eta)]=0$, so therefore

$$
0=\frac{d}{d \eta}\left\{\log c^{\star}(\eta)\right\}+E_{f_{X}}[X] \quad \therefore \quad E_{f_{X}}[X]=-\frac{d}{d \eta}\left\{\log c^{\star}(\eta)\right\}
$$

5 MARKS
(iii) By the univariate transformation theorem

$$
f_{Y}(y \mid \alpha)=\frac{1}{\Gamma(\alpha)}\left(\frac{1}{y}\right)^{\alpha+1} \exp \left\{-\frac{1}{y}\right\} \quad x>0
$$

Thus, if $\eta=-(\alpha+1)$, we have for $x \in \mathbb{R}$

$$
f_{Y}(y \mid \eta)=I_{(0, \infty)}(y) \exp \left\{-\frac{1}{y}\right\} \frac{1}{\Gamma(-1-\eta)} \exp \{\eta \log y\}
$$

so this is an Exponential Family distribution with natural parameter $\eta=-(\alpha+1)$.
4 MARKS
(b) Without loss of generality, consider X_{1} and X_{2}. By iterated expectation

$$
\begin{aligned}
& E_{f_{X_{1}}}\left[X_{1}\right]=E_{f_{M}}\left[E_{f_{X_{1} \mid M}}\left[X_{1} \mid M=m\right]\right]=E_{f_{M}}[M]=\mu \\
& E_{f_{X_{1}}}\left[X_{1}^{2}\right]=E_{f_{M}}\left[E_{f_{X_{1} \mid M}}\left[X_{1}^{2} \mid M=m\right]\right]=E_{f_{M}}\left[M^{2}+\sigma^{2}\right]=\mu^{2}+\tau^{2}+\sigma^{2}
\end{aligned}
$$

so that

$$
\operatorname{Var}_{f_{X_{1}}}\left[X_{1}\right]=E_{f_{X_{1}}}\left[X_{1}^{2}\right]-\left\{E_{f_{X_{1}}}\left[X_{1}\right]\right\}^{2}=\tau^{2}+\sigma^{2} .
$$

By symmetry $E_{f_{X_{2}}}\left[X_{2}\right]=\mu$ and $\operatorname{Var}_{f_{X_{2}}}\left[X_{2}\right]=\tau^{2}+\sigma^{2}$. Now,
$E_{f_{X_{1}, X_{2}}}\left[X_{1} X_{2}\right]=E_{f_{M}}\left[E_{f_{X_{1}, X_{2} \mid M}}\left[X_{1} X_{2} \mid M=m\right]\right]=E_{f_{M}}\left[E_{f_{X_{1} \mid M}}\left[X_{1} \mid M=m\right] \times E_{f_{X_{2} \mid M}}\left[X_{2} \mid M=m\right]\right]$
by conditional independence. Therefore

$$
E_{f_{X_{1}, X_{2}}}\left[X_{1} X_{2}\right]=E_{f_{M}}[M \times M]=E_{f_{M}}\left[M^{2}\right]=\mu^{2}+\tau^{2}
$$

Hence

$$
\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=E_{f_{X_{1}, X_{2}}}\left[X_{1} X_{2}\right]-E_{f_{X_{1}}}\left[X_{1}\right] E_{f_{X_{2}}}\left[X_{2}\right]=\mu^{2}+\tau^{2}-\mu^{2}=\tau^{2}
$$

But this pairwise result holds for all pairs i, j, so the variance-covariance matrix takes the form

$$
\Sigma_{i j}= \begin{cases}\tau^{2}+\sigma^{2} & i=j \\ \tau^{2} & i \neq j\end{cases}
$$

6. (a) For $0<x<\infty$,

$$
F_{X_{n}}(x)=\left(\frac{n \lambda x}{1+n \lambda x}\right)^{n}=\left(1+\frac{1}{n \lambda x}\right)^{-n} \longrightarrow \exp \{-1 /(\lambda x)\}=F_{X}(x)
$$

as $n \longrightarrow \infty$.
6 MARKS
(b) We have, from the extreme order statistics result

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}
$$

so that for $z \geq 1$

$$
F_{Z_{n}}(z)=1-\frac{1}{z^{n}} \longrightarrow\left\{\begin{array}{cc}
0 & z<1 \\
1 & z \geq 1
\end{array}\right.
$$

as $n \longrightarrow \infty$, so the distribution is degenerate at $z=1$. Now, if $U_{n}=\left(Z_{n}\right)^{\alpha_{n}}$, then if $\alpha_{n}=1 / n$,

$$
F_{U_{n}}(u)=\operatorname{Pr}\left[U_{n} \leq u\right]=\operatorname{Pr}\left[\left(Z_{n}\right)^{\alpha_{n}} \leq u\right]=\operatorname{Pr}\left[Z_{n} \leq u^{1 / \alpha_{n}}\right]=1-\frac{1}{u} \quad u \geq 1 .
$$

8 MARKS
(c) From the formula sheet

$$
E_{f_{X}}[X]=\frac{1}{\lambda} \quad \operatorname{Var}_{f_{X}}[X]=\frac{1}{\lambda^{2}}
$$

and so from the Central Limit Theorem

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-1 / \lambda\right)}{1 / \lambda} \xrightarrow{d} Z \sim N(0,1)
$$

or, for large finite n

$$
\bar{X}_{n} \sim A N\left(1 / \lambda, 1 /\left(n \lambda^{2}\right)\right)
$$

Now, using the Delta Method with function $g(x)=e^{-1 / x}$, and $c=1 / \lambda$, we have

$$
\dot{g}(x)=\frac{e^{-1 / x}}{x^{2}} \quad \therefore \quad \dot{g}(c)=\lambda^{2} e^{-\lambda}
$$

and therefore for large finite n

$$
T_{n} \sim A N\left(e^{-\lambda}, \lambda^{2} e^{-2 \lambda} / n\right)
$$

