
556: MATHEMATICAL STATISTICS I

EXAMPLES CLASS NOTES

1. Multivariate Normal Calculations: In computing the sampling distributions for the sample
mean and sample variance statistics, we used properties of the multivariate Normal distribu-
tion. Specifically we used results concerning linear transforms of the Normal random vectors.

Recall that the multivariate normal distribution arises as a location-scale transform of a vector
of iid standard Normal components: let Z = (Z1, . . . , Zn)

⊤ be a vector if independent rvs with
Zi ∼ Normal(0, 1). Consider the transform

X = µ+VZ

where µ is n× 1 and V is n× n and non-singular. Then X ∼ Normaln(µ,Σ), with Σ = VV⊤. To
see this we may use the multivariate transformation theorem: we have that

fZ(z) =
n∏

i=1

(
1

2π

)1/2

exp

{
−1

2
z2i

}
=

(
1

2π

)n/2

exp

{
−1

2
z⊤z

}
and hence by the transformation theorem

fX(x) = fZ
(
V−1(x− µ)

)
|J |

where |J | is the absolute value of the determinant of the transformation. For this linear transfor-
mation, basic linear algebra results allow us to conclude that

|J | = |V|−1

that is, the reciprocal of the determinant of V. Hence if Σ = VV⊤, we have that

fX(x) =

(
1

2π

)n/2 1

|Σ|1/2
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
as the z⊤z term becomes

{V−1(x− µ)}⊤{V−1(x− µ)} = (x− µ)⊤{V−1}⊤{V−1}(x− µ)

= (x− µ)⊤{VV⊤}−1(x− µ)

and
|Σ| = |VV⊤| = |V||V⊤| = |V||V| = |V|2.

The mgf of the multivariate normal is easily computed. If t = (t1, . . . , tn)
⊤ is a vector of reals, we

have by independence that

MZ(t) = EZ

[
exp{t⊤Z}

]
=

n∏
i=1

EZi [exp{tiZi}] =
n∏

i=1

MZi(ti)

and from the formula sheet we therefore have that

MZ(t) =
n∏

i=1

exp

{
t2i
2

}
= exp

{
t⊤t

2

}
.
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From this result, we compute that

MX(t) = EX

[
exp{t⊤X}

]
= EZ

[
exp{t⊤(µ+VZ)}

]
= exp{t⊤µ}EZ

[
t⊤(VZ)}

]
= exp{t⊤µ}MZ(V

⊤Z)

= exp

{
t⊤µ+

1

2
t⊤(VV⊤)t

}

= exp

{
t⊤µ+

1

2
t⊤Σt

}
.

Now if Σ has a block diagonal structure

Σ =

[
Σ11 0
0 Σ22

]
where Σ11 is n1 × n1 and Σ22 is n2 × n2, then

Σ−1 =

[
Σ−1
11 0

0 Σ−1
22

]
and |Σ| = |Σ11||Σ22|. Hence if we consider the partition X = (X⊤

1 ,X
⊤
2 )

⊤ where X1 is an n1 × 1
vector, then

(x− µ)⊤Σ−1(x− µ) = (x1 − µ1)
⊤Σ−1

11 (x1 − µ1) + (x2 − µ2)
⊤Σ−1

22 (x1 − µ2)

where µ1 and µ2 are the relevant components of µ. Therefore in this block diagonal case, we
deduce that

fX(x) = fX1(x1)fX2(x2)

where

fX1(x1) =

(
1

2π

)n1/2 1

|Σ11|1/2
exp

{
−1

2
(x1 − µ1)

⊤Σ−1
11 (x1 − µ1)

}

fX2(x2) =

(
1

2π

)n2/2 1

|Σ22|1/2
exp

{
−1

2
(x2 − µ2)

⊤Σ−1
22 (x2 − µ2)

}
and hence X1 and X2 are independent. Similarly for the mgf, we have that

t⊤µ+
1

2
t⊤Σt =

(
t⊤1 µ1 +

1

2
t⊤1 Σ11t1

)
+

(
t⊤2 µ2 +

1

2
t⊤2 Σ22t2

)
and we conclude independence in the same way.

These results confirm that for the Normal case, the zero blocks in the variance-covariance matrix
Σ indicate independence of the components X1 and X2. In general for two variables, having a
zero covariance does not imply that the variables are independent, although the converse is true.
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2. Order statistics: If X1, . . . , Xn is a random sample, we have in the continuous case that the
marginal cdf of Yj = X(j) is

FYj (x) =

n∑
k=j

(
n

k

)
{FX(x)}k{1− FX(x)}n−k

and the marginal pdf is

fYj (x) =
n!

(j − 1)!(n− j)!
{FX(x)}j−1 {1− FX(x)}n−j fX(x)

To see this in the continuous case, if the jth order statistic is at x, then we have

(i) a single observation at x, which contributes fX(x);
(ii) j − 1 observations which have values less than x, which contributes {FX(x)}j−1;

(iii) n− j observations which have values greater than x, which contributes {1− FX(x)}n−j ;

Thus the required mass/density is proportional to

{FX(x)}j−1fX(x){1− FX(x)}n−j .

The normalizing constant is the number of ways of labelling the original x values to obtain this
configuration of order statistics: this is

n×
(
n− 1

j − 1

)
=

n!

(j − 1)!(n− j)!

we may choose the value in step (i) in n ways, and then the j − 1 data in step (ii) in
(
n−1
j−1

)
ways.

This heuristic argument can verified using direct computation. Recall that in the continuous case
the joint pdf of order statistics Y1, . . . , Yn with Yj = X(j) is

fY1,...,Yn(y1, . . . , yn) = n!fX(y1) . . . fX(yn) = n!
n∏

i=1

fX(yj) y1 < . . . < yn

as there are n! configurations of the xs that yield identical order statistics, and the result follows
by the Theorem of Total Probability. We obtain the marginal pdf of Yj by integrating out the other
n−1 variables: we do this in the order y1, y2, . . . , yj−1, then yn, yn−1, . . . , yj+1, and remember that
there is a constraint on the support of the pdf

y1 < y2 < · · · < yj−1 < yj < yj+1 < · · · < yn−1 < yn

• Integrate out y1:

n!
n∏

i=2

fX(yj)

∫ y2

−∞
fX(y1) dy1 = n!

n∏
i=2

fX(yj)FX(y2)

• Integrate out y2:

n!

n∏
i=3

fX(yj)

∫ y3

−∞
fX(y2)FX(y2) dy2 =

n!

2

n∏
i=3

fX(yj){FX(y3)}2

using the general calculus result that∫ b

a

dg(t)

dt
g(t) dt =

[
1

2
{g(t)}2

]b
a

=
1

2

(
{g(b)}2 − {g(a)}2

)
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• Integrate out y3:

n!

2

n∏
i=4

fX(yj)

∫ y4

−∞
fX(y3){FX(y3)}2 dy3 =

n!

2.3

n∏
i=4

fX(yj){FX(y3)}3

Repeating this to finally integrate out up to j − 1 leaves

n!

2.3. . . . .(j − 1)

n∏
i=j

fX(yj){FX(yj)}j−1.

Now we begin integrating from yn downwards:

• Integrate out yn:

n!

(j − 1)!

n−1∏
i=j

fX(yj){FX(yj)}j−1

∫ ∞

yn−1

fX(yn) dyn

=
n!

(j − 1)!

n−1∏
i=j

fX(yj){FX(yj)}j−1{1− FX(yn−1)}

• Integrate out yn−1:

n!

(j − 1)!

n−2∏
i=j

fX(yj){FX(yj)}j−1

∫ ∞

yn−2

fX(yn){1− FX(yn−1) dyn−1

=
n!

(j − 1)!.2

n−2∏
i=j

fX(yj){FX(yj)}j−1{1− FX(yn−2)}2

and so on until we have integrated out yj+1 to obtain

fYj (yj) =
n!

(j − 1)!(n− j)!
{FX(yj)}j−1 {1− FX(yj)}n−j fX(yj).

The cdf is also readily computable by direct calculation using integration by parts:

FYj (yj) =

∫ yj

−∞
fYj (t) dt =

n!

(j − 1)!(n− j)!

∫ yj

−∞
fX(t){FX(t)}j−1 {1− FX(t)}n−j dt

=
n!

(j − 1)!(n− j)!

[
1

j
{FX(t)}j {1− FX(t)}n−j

]yj
−∞

+
n!

(j − 1)!(n− j)!

∫ yj

−∞

n− j

j
fX(t){FX(t)}j {1− FX(t)}n−j−1 dt

=

(
n

j

)
{FX(yj)}j {1− FX(yj)}n−j

+

(
n

j

)
(n− j)

∫ yj

−∞
fX(t){FX(t)}j {1− FX(t)}n−j−1 dt
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Note that in the integrand the power on the second term is reduced to n− j− 1. Therefore, using
this calculation recursively to we obtain

n∑
k=j

(
n

k

)
{FX(yj)}k {1− FX(yj)}n−k

Using either the heuristic approach, or direct computation, it is possible to construct the joint pdf
for Yj = X(j) and Yk = X(k) for j < k as

fYj ,Yk
(yj , yk) = n(n− 1)

(
n− 2

j − 1

)(
n− j − 1

n− k

)
fX(yj)fX(yk){FX(yj)}j−1{FX(yk)− FX(yj)}k−j−1{1− FX(yk)}n−k

for yj < yk and zero otherwise. In the special case of j = 1 and k = n, we obtain

fY1,Yn(y1, yn) = n(n− 1)fX(y1)fX(yn){FX(yn)− FX(y1)}n−2 y1 < yn

In this case, we can also construct the joint cdf: we have that

FY1,Yn(y1, yn) = PY1,Yn [Y1 ≤ y1, Yn ≤ yn]

= PX1,...,Xn

[
n∩

i=1

(Xi ≤ yn)

]
− PX1,...,Xn

[
n∩

i=1

(y1 < Xi ≤ yn)

]

= {FX(yn)}n − {FX(yn)− FX(y1)}n

by independence, as we have the partition

(Yn ≤ yn) = ((Y1 ≤ y1) ∩ (Yn ≤ yn)) ∪ ((Y1 > y1) ∩ (Yn ≤ yn))

where

• the event (Yn ≤ yn) corresponds to the event that all of X1, . . . , Xn are less than or equal to
the value yn, so

(Yn ≤ yn) =
n∩

i=1

(Xi ≤ yn)

• the event ((Y1 > y1) ∩ (Yn ≤ yn)) is equivalent to all Xi lying between y1 and yn

(Y1 > y1) ∩ (Yn ≤ yn) =
n∩

i=1

(y1 < Xi ≤ yn)

and the result follows by probability Axiom III.
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