556: MATHEMATICAL STATISTICS I

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables $\{X_n\}$ for large n, we attempt to find sequences of constants $\{a_n\}$ and $\{b_n\}$ such that

$$Z_n = a_n X_n + b_n \xrightarrow{d} Z$$

where Z has some distribution characterized by cdf F_Z . Then, for large n, $F_{Z_n}(z) = F_Z(z)$, so

$$F_{X_n}(x) = P[X_n \le x] = P[a_n X_n + b_n \le a_n x + b_n] = F_{Z_n}(a_n x + b_n) = F_{Z_n}(a_n x + b_n).$$

Example: Suppose that the rvs $X_1, X_2, ..., X_n$ are i.i.d. with $X_i \sim Exponential(1)$, and let $Y_n = \max\{X_1, X_2, ..., X_n\}$. Then by a previous result, for y > 0,

$$F_{Y_n}(y) = \{F_X(y)\}^n = \{1 - e^{-y}\}^n \longrightarrow 0$$

and there is no limiting distribution. However, if $a_n = 1$ and $b_n = -\log n$, and set $Z_n = a_n Y_n + b_n$, then as $n \longrightarrow \infty$,

$$F_{Z_n}(z) = P[Z_n \le z] = P[Y_n \le z + \log n] = \{1 - e^{-z - \log n}\}^n \longrightarrow \exp\{-e^{-z}\} = F_Z(z),$$

$$F_{Y_n}(y) = P[Y_n \le y] = P[Z_n \le y - \log n] = F_Z(y - \log n) = \exp\{-e^{-y + \log n}\} = \exp\{-ne^{-y}\}$$

and by differentiating, for y > 0

$$f_{Y_n}(y) = ne^{-y} \exp\{-ne^{-y}\}.$$

This can be compared with the exact version, for y > 0

$$f_{Y_n}(y) = ne^{-y}(1 - e^{-y})^{n-1}.$$

• Asymptotic Normality: A sequence of rvs $\{X_n\}$ is asymptotically normally distributed if there exist sequences of real constants $\{\mu_n\}$ and $\{\sigma_n\}$ (with $\sigma_n > 0$) such that

$$\frac{X_n - \mu_n}{\sigma_n} \stackrel{d}{\longrightarrow} Z \sim Normal(0, 1).$$

The notation $X_n ilde{\sim} Normal(\mu_n, \sigma_n^2)$ or $X_n \sim \mathcal{AN}(\mu_n, \sigma_n^2)$ as $n \longrightarrow \infty$ is commonly used.

- Asymptotic Approximations for Transformations: Suppose $\{X_n\}$ are a sequence of rvs, and that for real sequence $\{a_n\}$ with $a_n \longrightarrow \infty$ as $n \longrightarrow \infty$,
 - (i) for real constant x_0 and random variable V,

$$a_n(X_n - x_0) \stackrel{d}{\longrightarrow} V$$

(ii) real function g is differentiable at x_0 , with derivative \dot{g} .

Then

$$a_n(g(X_n) - g(x_0)) \xrightarrow{d} \dot{g}(x_0)V$$

Proof. Note first that for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x-x_0| \le \delta \implies |g(x)-g(x_0)-\dot{g}(x_0)(x-x_0)| \le \epsilon |x-x_0|$$

Now, from (i) we using stochastic order notation (see Appendix) have

$$a_n(X_n - x_0) = O_p(1)$$
 \Longrightarrow $X_n - x_0 = O_p(a_n^{-1}) = o_p(1)$

as $a_n \longrightarrow \infty$. Therefore, by definition, for every $\delta > 0$, $P[|X_n - x_0| \le \delta] \longrightarrow 1$, and therefore from above, for every $\epsilon > 0$,

$$P[|g(X_n) - g(x_0) - \dot{g}(x_0)(X_n - x_0)| \le \epsilon |X_n - x_0|] \longrightarrow 1.$$

Hence

$$a_n(g(X_n) - g(x_0) - \dot{g}(x_0)(X_n - x_0)) = o_p(a_n(X_n - x_0)) = o_p(1)$$

Therefore

$$a_n(g(X_n) - g(x_0)) = \dot{g}(x_0)\{a_n(X_n - x_0)\} + o_p(1)$$

and hence

$$a_n(g(X_n) - g(x_0)) \stackrel{d}{\longrightarrow} \dot{g}(x_0)V.$$

• The Delta Method: Consider sequence of rvs $\{X_n\}$ such that

$$\sqrt{n}(X_n - \mu) \stackrel{d}{\longrightarrow} X.$$

Suppose that g(.) is a function such that first derivative $\dot{g}(.)$ is continuous in a neighbourhood of μ , with $\dot{g}(\mu) \neq 0$. Then

$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{d} \dot{g}(\mu)X.$$

In particular, if

$$\sqrt{n}(X_n - \mu) \xrightarrow{d} X \sim Normal(0, \sigma^2).$$

then

$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{d} \dot{g}(\mu)X \sim Normal(0, \{\dot{g}(\mu)\}^2 \sigma^2).$$

Using the result above, with $a_n = \sqrt{n}, x_0 = \mu, V = X$, we have that

$$\sqrt{n}(g(X_n) - g(\mu)) = \dot{g}(\mu)\sqrt{n}(X_n - \mu) \xrightarrow{d} \dot{g}(\mu)X$$

and if $X \sim Normal(0, \sigma^2)$, it follows from the properties of the Normal distribution that

$$\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{d} Normal(0, \{\dot{g}(\mu)\}^2 \sigma^2).$$

Note that this method does not give a useful result if $\dot{g}(\mu) = 0$.

• Multivariate Version: Consider a sequence of random vectors $\{X_n\}$ such that

$$\sqrt{n}(\mathbf{X}_n - \boldsymbol{\mu}) \stackrel{d}{\longrightarrow} \mathbf{X}.$$

and $\mathbf{g}: \mathbb{R}^d \longrightarrow \mathbb{R}^k$ is a vector-valued function with first derivative matrix $\dot{\mathbf{g}}(.)$ which is continuous in a neighbourhood of $\boldsymbol{\mu}$, with $\dot{g}(\boldsymbol{\mu}) \neq \mathbf{0}$. Note that \mathbf{g} can be considered as a $k \times 1$ vector of scalar functions.

$$\mathbf{g}(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_k(\mathbf{x}))^{\top}.$$

Note that $\dot{\mathbf{g}}(\mathbf{x})$ is a $(k \times d)$ matrix with (i, j)th element

$$\frac{\partial g_i(\mathbf{x})}{\partial x_i}$$

Under these assumptions, in general

$$\sqrt{n}(\mathbf{g}(\mathbf{X}_n) - \mathbf{g}(\boldsymbol{\mu})) \stackrel{d}{\longrightarrow} \dot{\mathbf{g}}(\boldsymbol{\mu})\mathbf{X}.$$

and in particular, if

$$\sqrt{n}(\mathbf{X}_n - \boldsymbol{\mu}) \stackrel{d}{\longrightarrow} \mathbf{X} \sim Normal_k(\mathbf{0}, \Sigma).$$

where Σ is a positive definite, symmetric $k \times k$ matrix, then

$$\sqrt{n}(\mathbf{g}(\mathbf{X}_n) - \mathbf{g}(\boldsymbol{\mu})) \stackrel{d}{\longrightarrow} \dot{\mathbf{g}}(\boldsymbol{\mu}) X \sim Normal_k \left(\mathbf{0}, \dot{\mathbf{g}}(\boldsymbol{\mu}) \Sigma \dot{\mathbf{g}}(\boldsymbol{\mu})^{\top}\right).$$

• The Second Order Delta Method: Normal case: Consider sequence of rvs $\{X_n\}$ such that

$$\sqrt{n}(X_n - \mu) \xrightarrow{d} Normal(0, \sigma^2).$$

Suppose that g(.) is a function such that first derivative $\dot{g}(.)$ is continuous in a neighbourhood of μ , with $\dot{g}(\mu) = 0$, but second derivative exists at μ with $\ddot{g}(\mu) \neq 0$. Then

$$n(g(X_n) - g(\mu)) \xrightarrow{d} \sigma^2 \frac{\ddot{g}(\mu)}{2} X$$

where $X \sim \chi_1^2$. This results uses a second order Taylor approximation; we have

$$g(X_n) = g(\mu) + \dot{g}(\mu)(X_n - \mu) + \frac{\ddot{g}(\mu)}{2}(X_n - \mu)^2 + o_p(1)$$

thus, as $\dot{g}(\mu) = 0$,

$$g(X_n) - g(\mu) = \frac{\ddot{g}(\mu)}{2}(X_n - \mu)^2 + o_p(1)$$

and thus

$$n(g(X_n) - g(\mu)) = \frac{\ddot{g}(\mu)}{2} \{\sqrt{n}(X_n - \mu)\}^2 \xrightarrow{d} \sigma^2 \frac{\ddot{g}(\mu)}{2} Z^2$$

where $Z^2 \sim \chi_1^2$.

• EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X_1, \ldots, X_n and their sample mean random variable \overline{X}_n

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\longrightarrow} X \sim Normal(0, \sigma^2).$$

Consider $g(x) = x^2$, so that $\dot{g}(x) = 2x$, and hence, if $\mu \neq 0$,

$$\sqrt{n}(\overline{X}_n^2 - \mu^2) \xrightarrow{d} X \sim Normal(0, 4\mu^2\sigma^2)$$

and

$$\overline{X}_n^2 \sim \mathcal{AN}(\mu^2, 4\mu^2\sigma^2/n)$$

If $\mu = 0$, we proceed by a different route to compute the approximate distribution of \overline{X}_n^2 ; note that, if $\mu = 0$,

$$\sqrt{nX_n} \xrightarrow{d} X \sim Normal(0, \sigma^2)$$

so therefore

$$n\overline{X}_n^2 = (\sqrt{n}\overline{X}_n)^2 \xrightarrow{d} X^2 \sim \text{Gamma}(1/2, 1/(2\sigma^2))$$

by elementary transformation results. Hence, for large n,

$$\overline{X}_n^2 \sim \mathsf{Gamma}(1/2, n/(2\sigma^2))$$

2. Again under the conditions of the CLT, consider the distribution of $1/\overline{X}_n$. In this case, we have a function g(x) = 1/x, so $\dot{g}(x) = -1/x^2$, and if $\mu \neq 0$, the Delta method gives

$$\sqrt{n}(1/\overline{X}_n - 1/\mu) \xrightarrow{d} X \sim Normal(0, \sigma^2/\mu^4)$$

or,

$$\frac{1}{\overline{X}_n} \sim \mathcal{AN}(1/\mu, n^{-1}\sigma^2/\mu^4).$$

APPENDIX: STOCHASTIC ORDER NOTATION

• For random variable Z, we write $Z = O_p(1)$ if for all $\epsilon > 0$, there exists $M < \infty$ such that

$$P[|Z| \ge M] \le \epsilon.$$

• For sequence $\{Z_n\}$, write $Z_n = \mathcal{O}_p(1)$ if for all n, $P[|Z_n| \ge M] \le \epsilon$, and write $Z_n = \mathcal{O}_p(S_n)$ for sequence of random variables $\{S_n\}$ if

$$\frac{|Z_n|}{|S_n|} = \mathcal{O}_p(1).$$

Note that this includes the case where S_n is a sequence of reals, rather than random variables. Finally, write $Z_n = o_p(1)$ if $Z_n \stackrel{p}{\longrightarrow} 0$, and $Z_n = o_p(S_n)$ if

$$\frac{|Z_n|}{|S_n|} = o_p(1).$$

Note that $O_p(1)o_p(1) = o_p(1)$ and $O_p(1) + o_p(1) = O_p(1)$.