
556: MATHEMATICAL STATISTICS I

STOCHASTIC CONVERGENCE

The following definitions relate to random variables defined on the same probability space (Ω,F , P ).
The statements are given in terms of P (rather than PX etc) for simplicity.

• Convergence in Probability: The sequence of random variables X1, . . . , Xn converges in prob-
ability to constant c, denoted

Xn
p−→ c

if
lim

n−→∞
P [|Xn − c| < ϵ] = 1 or lim

n−→∞
P [|Xn − c| ≥ ϵ] = 0

that is, if the limiting distribution of X1, . . . , Xn is degenerate at c.

Weak Law Of Large Numbers: Suppose that X1, . . . , Xn is a sequence of i.i.d. random variables
with expectation µ and finite variance σ2. Let Xn be the sample mean. Then, for all ϵ > 0,

lim
n−→∞

P
[∣∣Xn − µ

∣∣ < ϵ
]
= 1,

that is, Xn
p−→ µ, and thus the mean of X1, . . . , Xn converges in probability to µ. We have seen

that Xn has expectation µ and variance σ2/n, and hence by the Chebychev Inequality,

P
[∣∣Xn − µ

∣∣ ≥ ϵ
]
≤ σ2

nϵ2
−→ 0 as n −→ ∞

for all ϵ > 0. Hence Xn
p−→ µ as

P
[∣∣Xn − µ

∣∣ < ϵ
]
−→ 1 as n −→ ∞.

The sequence of random variables X1, . . . , Xn converges in probability to random variable X

Xn
p−→ X

if, for all ϵ > 0,

lim
n−→∞

P [|Xn −X| < ϵ] = 1 or equivalently lim
n−→∞

P [|Xn −X| ≥ ϵ] = 0

To understand this definition, let ϵ > 0, and consider

An(ϵ) ≡ {ω : |Xn(ω)−X(ω)| ≥ ϵ}

Then we have Xn
p−→ X if

lim
n−→∞

P (An(ϵ)) = 0

that is, if there exists an n such that for all m ≥ n, P (Am(ϵ)) < ϵ.

• Convergence Almost Surely: The sequence of random variables X1, . . . , Xn converges almost
surely to random variable X , denoted Xn

a.s.−→ X if for every ϵ > 0

P
[

lim
n−→∞

|Xn −X| < ϵ
]
= 1,
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that is, if A ≡ {ω : Xn(ω) −→ X(ω)}, then P (A) = 1. Equivalently, Xn
a.s.−→ X if for every ϵ > 0

P
[

lim
n−→∞

|Xn −X| ≥ ϵ
]
= 0.

This can also be written
lim

n−→∞
Xn(ω) = X(ω)

for every ω ∈ Ω, except possibly those lying in a set of probability zero under P .

Alternative characterizations:
(I) Let ϵ > 0, and the sets Am(ϵ) and Bn(ϵ) be defined for n,m ≥ 1 by

Am(ϵ) ≡ {ω : |Xm(ω)−X(ω)| ≥ ϵ} Bn(ϵ) ≡
∞⋃

m=n

Am(ϵ).

Then Xn
a.s.−→ X if and only if P (Bn(ϵ)) −→ 0 as n −→ ∞.

– Am(ϵ) is the set of ω for which Xm(ω) is at least ϵ away from X .

– Bn(ϵ) is the set of ω for which Xm(ω) at least ϵ away from X , for at least one m ≥ n.

– The event Bn(ϵ) occurs if there exists an m ≥ n such that |Xm −X| ≥ ϵ.

– Xn
a.s.−→ X if and only if and only if P (Bm(ϵ)) −→ 0.

(II) Xn
a.s.−→ X if and only if

P [ |Xn −X| ≥ ϵ infinitely often ] = 0

that is, Xn
a.s.−→ X if and only if there are only finitely many Xn for which |Xn(ω)−X(ω)| ≥ ϵ

if ω lies in a set of probability greater than zero.

Note that Xn
a.s.−→ X if and only if

lim
n−→∞

P (Bn(ϵ)) = lim
n−→∞

P

( ∞⋃
m=n

Am(ϵ)

)
= 0

in contrast with the definition of convergence in probability, where Xn
p−→ X if

lim
n−→∞

P (An(ϵ)) = 0.

Clearly

An(ϵ) ⊆
∞⋃

m=n

Am(ϵ)

so therefore

lim
n−→∞

P

( ∞⋃
m=n

Am(ϵ)

)
= 0 =⇒ lim

n−→∞
P (An(ϵ)) = 0

and hence almost sure convergence implies convergence in probability.

Alternative terminology:

– Xn −→ X almost everywhere, Xn
a.e.−→ X

– Xn −→ X with probability 1, Xn
w.p.1−→ X
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Interpretation: A random variable is a real-valued function from (a sigma-algebra defined on)
sample space Ω to R . The sequence of random variables X1, . . . , Xn corresponds to a sequence of
functions defined on elements of Ω. Almost sure convergence requires that the sequence of real
numbers Xn(ω) converges to X(ω) (as a real sequence) for all ω ∈ Ω, as n −→ ∞, except perhaps
when ω is in a set having probability zero under the probability distribution of X .

Strong Law Of Large Numbers: Suppose that X1, . . . , Xn is a sequence of i.i.d. random variables
with expectation µ and (finite) variance σ2. Let Xn be the sample mean. Then for all ϵ > 0,

P
[

lim
n−→∞

∣∣Xn − µ
∣∣ < ϵ

]
= 1,

that is, Xn
a.s.−→ µ, and thus the mean of X1, . . . , Xn converges almost surely to µ.

• Convergence in Distribution: Consider a sequence of random variables X1, X2, . . . and a cor-
responding sequence of cdfs, FX1 , FX2 , . . . so that for n = 1, 2, .. FXn(x) = P [Xn ≤ x] . Suppose
that there exists a cdf, FX , such that for all x at which FX is continuous,

lim
n−→∞

FXn(x) = FX(x).

Then X1, . . . , Xn converges in distribution to random variable X with cdf FX , denoted

Xn
d−→ X

and FX is the limiting distribution. Convergence of a sequence of mgfs or cfs also indicates
convergence in distribution, that is, if for all t at which MX(t) is defined, if as n −→ ∞, we have

MXi(t) −→ MX(t) ⇐⇒ Xn
d−→ X.

The sequence of random variables X1, . . . , Xn converges in distribution to constant c if the limit-
ing distribution of X1, . . . , Xn is degenerate at c, that is,

Xn
d−→ X

and P [X = c] = 1, so that

FX(x) =

{
0 x < c

1 x ≥ c

Interpretation: This special case of convergence in distribution occurs when the limiting distri-
bution is discrete, with the probability mass function only being non-zero at a single value, that
is, if the limiting random variable is X , then P [X = c] = 1 and zero otherwise. We say that
the sequence of random variables X1, . . . , Xn converges in distribution to c if and only if, for all
ϵ > 0,

lim
n−→∞

P [|Xn − c| < ϵ] = 1

This definition indicates that convergence in distribution to a constant c occurs if and only if the
probability becomes increasingly concentrated around c as n −→ ∞.

To show that we should ignore points of discontinuity of FX in the definition of convergence in
distribution, consider the following example: let

Fϵ(x) =

{
0 x < ϵ

1 x ≥ ϵ
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be the cdf of a degenerate distribution with probability mass 1 at x = ϵ. Now consider a sequence
{ϵn} of real values converging to ϵ from below. Then, as ϵn < ϵ, we have

Fϵn(x) =

{
0 x < ϵn

1 x ≥ ϵn

which converges to Fϵ(x) at all real values of x. However, if instead {ϵn} converges to ϵ from
above, then Fϵn(ϵ) = 0 for each finite n, as ϵn > ϵ, so lim

n−→∞
Fϵn(ϵ) = 0. Hence, as n −→ ∞,

Fϵn(ϵ) −→ 0 ̸= 1 = Fϵ(ϵ).

Thus the limiting function in this case is

Fϵ(x) =

{
0 x ≤ ϵ

1 x > ϵ

which is not a cdf as it is not right-continuous. However, if {Xn} and X are random variables
with distributions {Fϵn} and Fϵ, then P [Xn = ϵn] = 1 converges to P [X = ϵ] = 1, however we
take the limit, so Fϵ does describe the limiting distribution of the sequence {Fϵn}. Thus, because
of right-continuity, we ignore points of discontinuity in the limiting function.

• Convergence In rth Mean
The sequence of random variables X1, . . . , Xn converges in rth mean to random variable X ,
denoted Xn

r−→ X if
lim

n−→∞
E [|Xn −X|r] = 0.

For example, if
lim

n−→∞
E
[
(Xn −X)2

]
= 0

then we write Xn
r=2−→ X . In this case, we say that {Xn} converges to X in mean-square or in

quadratic mean. For r1 > r2 ≥ 1,

Xn
r=r1−→ X =⇒ Xn

r=r2−→ X

as, by Lyapunov’s inequality

E[ |Xn −X|r2 ]1/r2 ≤ E[ |Xn −X|r1 ]1/r1 ∴ E[ |Xn −X|r2 ] ≤ E[ |Xn −X|r1 ]r2/r1 −→ 0

as n −→ ∞, as r2 < r1. Thus
E[ |Xn −X|r2 ] −→ 0

and Xn
r=r2−→ X . The converse does not hold in general.

• Relating The Modes Of Convergence For sequence of random variables X1, . . . , Xn,

Xn
a.s.−→ X

or

Xn
r−→ X

 =⇒ Xn
p−→ X =⇒ Xn

d−→ X

so almost sure convergence and convergence in rth mean for some r both imply convergence in
probability, which in turn implies convergence in distribution to random variable X .

No other relationships hold in general
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• Slutsky’s Theorem: Suppose that

Xn
d−→ X and Yn

p−→ c

Then

(i) Xn + Yn
d−→ X + c

(ii) XnYn
d−→ cX

(iii) Xn/Yn
d−→ X/c provided c ̸= 0.

• The Central Limit Theorem: Suppose X1, . . . , Xn are i.i.d. random variables with mgf MX , with
expectation µ and variance σ2, both finite. Let the random variable Zn be defined by

Zn =

n∑
i=1

Xi − nµ

√
nσ2

=

√
n(Xn − µ)

σ

and denote by MZn the mgf of Zn. Then, as n −→ ∞,

MZn(t) −→ exp{t2/2}

irrespective of the form of MX . Thus, as n −→ ∞, Zn
d−→ Z ∼ Normal(0, 1).

Proof. First, let Yi = (Xi − µ)/σ for i = 1, . . . , n. Then Y1, . . . , Yn are i.i.d. with mgf MY say, and
EfY [Yi] = 0, VarY [Yi] = 1 for each i. Using a Taylor series expansion, we have that for t in a
neighbourhood of zero,

MY (t) = 1 + tEY [Y ] +
t2

2!
EY [Y

2] +
t3

3!
EY [Y

3] + . . . = 1 +
t2

2
+ O(t3)

using the O(t3) notation to capture all terms involving t3 and higher powers. Re-writing Zn as

Zn =
1√
n

n∑
i=1

Yi

as Y1, . . . , Yn are independent, we have by a standard mgf result that

MZn(t) =
n∏

i=1

{
MY

(
t√
n

)}
=

{
1 +

t2

2n
+ O(n−3/2)

}n

=

{
1 +

t2

2n
+ o(n−1)

}n

.

so that, by the definition of the exponential function, as n −→ ∞

MZn(t) −→ exp{t2/2} ∴ Zn
d−→ Z ∼ Normal(0, 1)

where no further assumptions on MX are required.

Alternative statement: The theorem can also be stated in terms of

Zn =

n∑
i=1

Xi − nµ

√
n

=
√
n(Xn − µ)

so that
Zn

d−→ Z ∼ Normal(0, σ2).

and σ2 is termed the asymptotic variance of Zn.
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Notes :
(i) The theorem requires the existence of the mgf MX .

(ii) The theorem holds for the i.i.d. case, but there are similar theorems for non identically
distributed, and dependent random variables.

(iii) The theorem allows the construction of asymptotic normal approximations. For example,
for large but finite n, by using the properties of the Normal distribution,

Xn ∼ AN (µ, σ2/n)

Sn =

n∑
i=1

Xi ∼ AN (nµ, nσ2).

where AN (µ, σ2) denotes an asymptotic normal distribution. The notation

Xn .∼. Normal(µ, σ2/n)

is sometimes used.
(iv) The multivariate version of this theorem can be stated as follows: Suppose X1, . . . ,Xn are

i.i.d. d-dimensional random variables with mgf MX, with

EX[Xi] = µ VarX[Xi] = Σ

where Σ is a positive definite, symmetric k × k matrix defining the variance-covariance
matrix of the Xi. Let the random variable Zn be defined by

Zn =
√
n(Xn − µ)

where

Xn =
1

n

n∑
i=1

Xi.

Then
Zn

d−→ Z ∼ Normald(0,Σ)

as n −→ ∞.
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Appendix: Technical Details

Proof. Relating the modes of convergence.

(a) Xn
a.s.−→ X =⇒ Xn

p−→ X . Suppose Xn
a.s.−→ X , and let ϵ > 0. Then

P [ |Xn −X| < ϵ ] ≥ P [ |Xm −X| < ϵ, ∀m ≥ n ] (1)

as, considering the original sample space,

{ω : |Xm(ω)−X(ω)| < ϵ, ∀m ≥ n} ⊆ {ω : |Xn(ω)−X(ω)| < ϵ}

But, as Xn
a.s.−→ X , P [ |Xm − X| < ϵ, ∀m ≥ n ] −→ 1, as n −→ ∞. So, after taking limits in

equation (1), we have

lim
n−→∞

P [ |Xn −X| < ϵ ] ≥ lim
n−→∞

P [ |Xm −X| < ϵ, ∀m ≥ n ] = 1

and so
lim

n−→∞
P [ |Xn −X| < ϵ ] = 1 ∴ Xn

p−→ X.

(b) Xn
r−→ X =⇒ Xn

p−→ X . Suppose Xn
r−→ X , and let ϵ > 0. Then, using an argument similar to

Chebychev’s Lemma,

E[ |Xn −X|r ] ≥ E[ |Xn −X|rI{|Xn−X|>ϵ} ] ≥ ϵrP [|Xn −X| > ϵ].

Taking limits as n −→ ∞, as Xn
r−→ X , E[ |Xn −X|r ] −→ 0 as n −→ ∞, so therefore

P [|Xn −X| > ϵ] −→ 0 ∴ Xn
p−→ X.

(c) Xn
p−→ X =⇒ Xn

d−→ X . Suppose Xn
p−→ X , and let ϵ > 0. Denote, in the usual way,

FXn(x) = P [Xn ≤ x] and FX(x) = P [X ≤ x].

Then, by the theorem of total probability, we have two inequalities

FXn(x) = P [Xn ≤ x] = P [Xn ≤ x,X ≤ x+ϵ]+P [Xn ≤ x,X > x+ϵ] ≤ FX(x+ϵ)+P [|Xn−X| > ϵ]

FX(x−ϵ) = P [X ≤ x−ϵ] = P [X ≤ x−ϵ,Xn ≤ x]+P [X ≤ x−ϵ,Xn > x] ≤ FXn(x)+P [|Xn−X| > ϵ].

as A ⊆ B =⇒ P (A) ≤ P (B) yields

P [Xn ≤ x,X ≤ x+ ϵ ] ≤ FX(x+ ϵ) and P [X ≤ x− ϵ,Xn ≤ x ] ≤ FXn(x).

Thus
FX(x− ϵ)− P [ |Xn −X| > ϵ] ≤ FXn(x) ≤ FX(x+ ϵ) + P [ |Xn −X| > ϵ]

and taking limits as n −→ ∞ (with care; we cannot yet write limn−→∞ FXn(x) as we do not know
that this limit exists) recalling that Xn

p−→ X ,

FX(x− ϵ) ≤ lim inf
n−→∞

FXn(x) ≤ lim sup
n−→∞

FXn(x) ≤ FX(x+ ϵ)

Then if FX is continuous at x, FX(x− ϵ) −→ FX(x) and FX(x+ ϵ) −→ FX(x) as ϵ −→ 0, so

FX(x) ≤ lim inf
n−→∞

FXn(x) ≤ lim sup
n−→∞

FXn(x) ≤ FX(x)

and thus FXn(x) −→ FX(x) as n −→ ∞.
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Thus all results follow.

THEOREM (Partial Converses)

(i) If
∞∑
n=1

P [ |Xn −X| > ϵ ] < ∞

for every ϵ > 0, then Xn
a.s.−→ X .

(ii) If, for some positive integer r,
∞∑
n=1

E[ |Xn −X|r ] < ∞

then Xn
a.s.−→ X .

Proof. (i) Let ϵ > 0. Then for n ≥ 1,

P [ |Xn −X| > ϵ, for some m ≥ n ] ≡ P

[ ∞⋃
m=n

{|Xm −X| > ϵ}

]
≤

∞∑
m=n

P [ |Xm −X| > ϵ ]

as, by elementary probability theory, P (A ∪ B) ≤ P (A) + P (B). But, as it is the tail sum of a
convergent series (by assumption), it follows that

lim
n−→∞

∞∑
m=n

P [ |Xm −X| > ϵ ] = 0.

Hence
lim

n−→∞
P [ |Xn −X| > ϵ, for some m ≥ n ] = 0

and Xn
a.s.−→ X .

(ii) Identical to part (i), and using part (b) of the previous theorem that Xn
r−→ X =⇒ Xn

p−→ X .

Thus the partial converse results hold.
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