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SCORE FUNCTION AND FISHER INFORMATION
FOR LOCATION-SCALE FAMILIES

The location-scale family for rv X is defined using a linear transformation of a standard variable Z by
X=pu+o7
for y € Rand o > 0, and fz(.) is a “standard” distribution that does not depend on any parameters.

e For a continuous rv, we have for the pdf
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e For a discrete rv, we have for the pmf

P (@i o) = f7 <”“"‘“).
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In most settings, the discrete location-scale family is not that useful as it effectively amounts
merely to a re-labelling of the support of f7.

e In both cases, for the cdf, we have

Fx(z;p,0) = Fy <x—u) :

g

The score function, S(x;#), is defined by
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If 6 is m-dimensional, then S(X; 0) is (m x 1). For the location-scale family, we have that m = 2.

For the continuous case, we consider the construction where the pdf f7 has support Z = (a,b) for
values —oo < a < b < co. We have
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log fx(x;0) = log fx(z;p1,0) = —logo + log f7 (J)

and so
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In the following calculations, integration is over the support (a,b). For the first score function (1): we
have that
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by standard calculus arguments. Note that this equates to zero if

lim fz(z) = lim fz(z) =0.
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which certainly holds if the support is the whole of R.

For the second score function (2): we have that
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and, using integration by parts
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Note that if ¢« = —o0o and b = oo, this calculation is still valid as

lim 2fz(z) = lim zfz(2) =0
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because f(z) is integrable, and therefore is o(|z|~(*%)) for § > 0 as |2| — oo. Therefore, from (1) and
(2), we have under the usual regularity conditions
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Notice that this reduces to zero whenever
fz(a) = fz(b) =0
which is a common case when considering location-scale models (eg Normal, Cauchy etc).

The Fisher information, Z(0), is then defined as

T(6) = Varx[S(X; )] = Ex [S(X;0)S(X;0)T| — Ex [S(X;0)] Ex [S(X;0)]" (4)

2



which is an (m x m) symmetric and non-negative definite matrix. The three distinct elements of

S(x;0)S(x;0)" are
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From (7):
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Therefore combining (3), (8), (9) and (10) we observe from the definition (4) that

(10)

T(0) = Z(1,0) = -5 Vz

where V7 is a constant matrix computed from fz, with knowledge of the support (a, b).
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