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MULTIVARIATE TRANSFORMATIONS: THE CAUCHY DISTRIBUTION

The Cauchy distribution is a symmetric distribution on (−∞,∞) with pdf
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The standard case is θ = 0, σ = 1.

The Cauchy distribution arises as the ratio of two independent Gaussian random variables. Sup-
pose that X,Y ∼ Normal(0, 1). We then proceed by

(i) defining the transformation U = X/Y and V = |Y |,

(ii) finding the joint pdf fU,V (u, v), and

(iii) integrating out V to obtain the marginal pdf of U .

The mapping U = X/Y and V = |Y | is not 1-1: the two points (x, y) and (−x,−y) map to the same
(u, v). However, we may partition the support of (X,Y ) into A0, A1, A2 such that the mapping from
Ai to (U, V ) is one-to-one.

1. A0 = {(X,Y ) : Y = 0}: we can ignore this case as PY [Y = 0] = 0 when Y ∼ Normal(0, 1).

2. A1 = {(X,Y ) : Y > 0}: The mapping U = X/Y , V = |Y | is 1-1, and the inverse mappings are
h11(u, v) = uv, h21(u, v) = v.

3. A2 = {(X,Y ) : Y < 0}: The mapping U = X/Y , V = |Y | is one-to-one, and the inverse mappings
are h12(u, v) = −uv, h22(u, v) = −v.

In cases (ii) and (iii) we have the following Jacobians:
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We have that
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so therefore
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, u ∈ R, v ∈ R+
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and hence, on marginalization
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The general Cauchy(θ, σ) form is generated using a location-scale transform: that is, if Z ∼ Cauchy(0, 1),
then

X = σZ + θ

has a Cauchy(θ, σ) distribution.

The second (equivalent) construction of the standard Cauchy distribution is as a scale mixture. Suppose
X and Y have a joint distribution specified as

Y ∼ χ2
1 ≡ Gamma(1/2, 1/2)

X|Y = y ∼ Normal(0, y−1)

that is, the variance of X given Y = y is 1/y. Then we have that
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