556: Mathematical Statistics I

MUltivariate 1-1 Transformations

We consider the case of 1-1 transformations g, as in this case the probability transform result coincides with changing variables in a d-dimensional integral. We can consider $g=\left(g_{1}, \ldots, g_{d}\right)$ as a vector of functions forming the components of the new random vector \mathbf{Y}.
Given a collection of variables $\left(X_{1}, \ldots, X_{d}\right)$ with support $\mathbb{X}^{(d)}$ and joint pdf $f_{X_{1}, \ldots, X_{d}}$ we can construct the pdf of a transformed set of variables $\left(Y_{1}, \ldots, Y_{d}\right)$ using the following steps:

1. Write down the set of transformation functions g_{1}, \ldots, g_{d}

$$
\begin{gathered}
Y_{1}=g_{1}\left(X_{1}, \ldots, X_{d}\right) \\
\vdots \\
Y_{d}=g_{d}\left(X_{1}, \ldots, X_{d}\right)
\end{gathered}
$$

2. Write down the set of inverse transformation functions $g_{1}^{-1}, \ldots, g_{d}^{-1}$

$$
\begin{gathered}
X_{1}=g_{1}^{-1}\left(Y_{1}, \ldots, Y_{d}\right) \\
\vdots \\
X_{d}=g_{d}^{-1}\left(Y_{1}, \ldots, Y_{d}\right)
\end{gathered}
$$

3. Consider the joint support of the new variables, $\mathbb{Y}^{(k)}$.
4. Compute the Jacobian of the transformation: first form the matrix of partial derivatives

$$
D_{y}=\left[\begin{array}{cccc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \cdots & \frac{\partial x_{1}}{\partial y_{d}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \cdots & \frac{\partial x_{2}}{\partial y_{d}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{d}}{\partial y_{1}} & \frac{\partial x_{d}}{\partial y_{2}} & \cdots & \frac{\partial x_{d}}{\partial y_{d}}
\end{array}\right]
$$

where, for each (i, j)

$$
\frac{\partial x_{i}}{\partial y_{j}}=\frac{\partial}{\partial y_{j}}\left\{g_{i}^{-1}\left(y_{1}, \ldots, y_{d}\right)\right\}
$$

and then set $\left|J\left(y_{1}, \ldots, y_{d}\right)\right|=\left|\operatorname{det} D_{y}\right|$
Note that

$$
\operatorname{det} D_{y}=\operatorname{det} D_{y}^{\top}
$$

so that an alternative but equivalent Jacobian calculation can be carried out by forming D_{y}^{\top}. Note also that

$$
\left|J\left(y_{1}, \ldots, y_{d}\right)\right|=\frac{1}{\left|J\left(x_{1}, \ldots, x_{d}\right)\right|}
$$

where $J\left(x_{1}, \ldots, x_{d}\right)$ is the Jacobian of the transformation regarded in the reverse direction (that is, if we start with $\left(Y_{1}, \ldots, Y_{d}\right)$ and transfrom to $\left.\left(X_{1}, \ldots, X_{d}\right)\right)$
5. Write down the joint pdf of $\left(Y_{1}, \ldots, Y_{d}\right)$ as

$$
f_{Y_{1}, \ldots, Y_{d}}\left(y_{1}, \ldots, y_{d}\right)=f_{X_{1}, \ldots, X_{d}}\left(g_{1}^{-1}\left(y_{1}, \ldots, y_{d}\right), \ldots, g_{d}^{-1}\left(y_{1}, \ldots, y_{d}\right)\right) \times\left|J\left(y_{1}, \ldots, y_{d}\right)\right|
$$

for $\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{Y}^{(k)}$

EXAMPLE Suppose that X_{1} and X_{2} have joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2 \quad 0<x_{1}<x_{2}<1
$$

and zero otherwise. Compute the joint pdf of random variables

$$
Y_{1}=\frac{X_{1}}{X_{2}} \quad Y_{2}=X_{2}
$$

SOLUTION

1. Given that $\mathbb{X}^{(2)} \equiv\left\{\left(x_{1}, x_{2}\right): 0<x_{1}<x_{2}<1\right\}$ and

$$
g_{1}\left(t_{1}, t_{2}\right)=\frac{t_{1}}{t_{2}} \quad g_{2}\left(t_{1}, t_{2}\right)=t_{2}
$$

2. Inverse transformations:

$$
\left.\begin{array}{l}
Y_{1}=X_{1} / X_{2} \\
Y_{2}=X_{2}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1} Y_{2} \\
X_{2}=Y_{2}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} t_{2} \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}
$$

3. Range: to find $\mathbb{Y}^{(2)}$ consider point by point transformation from $\mathbb{X}^{(2)}$ to $\mathbb{Y}^{(2)}$ For a pair of points $\left(x_{1}, x_{2}\right) \in \mathbb{X}^{(2)}$ and $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ linked via the transformation, we have

$$
0<x_{1}<x_{2}<1 \Longleftrightarrow 0<y_{1} y_{2}<y_{2}<1
$$

and hence we can extract the inequalities

$$
0<y_{2}<1 \text { and } 0<y_{1}<1 \quad \mathbb{Y}^{(2)} \equiv(0,1) \times(0,1)
$$

4. The Jacobian for points $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ is

$$
D_{y}=\left[\begin{array}{cc}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{cc}
y_{2} & y_{1} \\
0 & 1
\end{array}\right] \Rightarrow\left|J\left(y_{1}, y_{2}\right)\right|=\left|\operatorname{det} D_{y}\right|=\left|y_{2}\right|=y_{2}
$$

Note that for points $\left(x_{1}, x_{2}\right) \in \mathbb{X}^{(2)}$ is

$$
D_{x}=\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{x_{2}} & \frac{x_{1}}{x_{2}^{2}} \\
0 & 1
\end{array}\right] \Rightarrow\left|J\left(x_{1}, x_{2}\right)\right|=\left|\operatorname{det} D_{x}\right|=\left|\frac{1}{x_{2}}\right|=\frac{1}{x_{2}}
$$

so that

$$
\left|J\left(y_{1}, y_{2}\right)\right|=\frac{1}{\left|J\left(x_{1}, x_{2}\right)\right|}
$$

5. Finally, we have

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(y_{1} y_{2}, y_{2}\right) \times y_{2}=2 y_{2} \quad 0<y_{1}<1,0<y_{2}<1
$$

and zero otherwise

EXAMPLE Suppose that X_{1} and X_{2} are independent and identically distributed random variables defined on \mathbb{R}^{+}each with pdf of the form

$$
f_{X}(x)=\sqrt{\frac{1}{2 \pi x}} \exp \left\{-\frac{x}{2}\right\} \quad x>0
$$

and zero otherwise. Compute the joint pdf of random variables $Y_{1}=X_{1}$ and $Y_{2}=X_{1}+X_{2}$

SOLUTION

1. Given that $\mathbb{X}^{(2)} \equiv\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, 0<x_{2}\right\}$ and

$$
g_{1}\left(t_{1}, t_{2}\right)=t_{1} \quad g_{2}\left(t_{1}, t_{2}\right)=t_{1}+t_{2}
$$

2. Inverse transformations:

$$
\left.\begin{array}{l}
Y_{1}=X_{1} \\
Y_{2}=X_{1}+X_{2}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1} \\
X_{2}=Y_{2}-Y_{1}
\end{array}\right.
$$

and thus

$$
g_{1}^{-1}\left(t_{1}, t_{2}\right)=t_{1} \quad g_{2}^{-1}\left(t_{1}, t_{2}\right)=t_{2}-t_{1}
$$

3. Range: to find $\mathbb{Y}^{(2)}$ consider point by point transformation from $\mathbb{X}^{(2)}$ to $\mathbb{Y}^{(2)}$ For a pair of points $\left(x_{1}, x_{2}\right) \in \mathbb{X}^{(2)}$ and $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ linked via the transformation; as both original variables are strictly positive, we can extract the inequalities

$$
0<y_{1}<y_{2}<\infty
$$

4. The Jacobian for points $\left(y_{1}, y_{2}\right) \in \mathbb{Y}^{(2)}$ is

$$
D_{y}=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \Rightarrow\left|J\left(y_{1}, y_{2}\right)\right|=\left|\operatorname{det} D_{y}\right|=|1|=1
$$

Note, here, $J\left(x_{1}, x_{2}\right)=\left|\operatorname{det} D_{x}\right|=1$ also so that again

$$
\left|J\left(y_{1}, y_{2}\right)\right|=\frac{1}{\left|J\left(x_{1}, x_{2}\right)\right|}
$$

5. Finally, we have for $0<y_{1}<y_{2}<\infty$

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =f_{X_{1}, X_{2}}\left(y_{1}, y_{2}-y_{1}\right) \times 1=f_{X_{1}}\left(y_{1}\right) \times f_{X_{2}}\left(y_{2}-y_{1}\right) \quad \text { by independence } \\
& =\sqrt{\frac{1}{2 \pi y_{1}}} \exp \left\{-\frac{y_{1}}{2}\right\} \sqrt{\frac{1}{2 \pi\left(y_{2}-y_{1}\right)}} \exp \left\{-\frac{\left(y_{2}-y_{1}\right)}{2}\right\} \\
& =\frac{1}{2 \pi} \frac{1}{\sqrt{y_{1}\left(y_{2}-y_{1}\right)}} \exp \left\{-\frac{y_{2}}{2}\right\}
\end{aligned}
$$

and zero otherwise

Here, for $y_{2}>0$

$$
\begin{aligned}
f_{Y_{2}}\left(y_{2}\right) & =\int_{-\infty}^{\infty} f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{1}=\int_{0}^{y_{2}} \frac{1}{2 \pi} \frac{1}{\sqrt{y_{1}\left(y_{2}-y_{1}\right)}} \exp \left\{-\frac{y_{2}}{2}\right\} d y_{1} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{y_{2}}{2}\right\} \int_{0}^{y_{2}} \frac{1}{\sqrt{y_{1}\left(y_{2}-y_{1}\right)}} d y_{1} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{y_{2}}{2}\right\} \int_{0}^{1} \frac{1}{\sqrt{t y_{2}\left(y_{2}-t y_{2}\right)}} y_{2} d t \quad \text { setting } y_{1}=t y_{2} \\
& =\frac{1}{2 \pi} \exp \left\{-\frac{y_{2}}{2}\right\} \int_{0}^{1} \frac{1}{\sqrt{t(1-t)}} d t \\
& =\frac{1}{2} \exp \left\{-\frac{y_{2}}{2}\right\}
\end{aligned}
$$

as

$$
\int_{0}^{1} \frac{1}{\sqrt{t(1-t)}} d t=\pi
$$

either by direct calculation, or by recognizing the integrand as proportional to a $\operatorname{Beta}(1 / 2,1 / 2)$ pdf.

Special Case: Convolution

Suppose that X_{1} and X_{2} have a joint pmf or pdf, $f_{X_{1}, X_{2}}$, and let $Y=X_{1}+X_{2}$. We compute the pmf/pdf of Y by using a Convolution Formula, which for continuous variables is a special case of the transformation theorem.

- Discrete Case: By the Theorem of Total Probability, we have from first principles that for any fixed y.

$$
f_{Y}(y)=P_{Y}[Y=y]=\sum_{\substack{x_{1} \\ x_{1}+x_{2}=y}} \sum_{x_{2}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{x_{1}} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)
$$

- Continuous Case: Consider $Y=X_{1}+X_{2}$ and $Z=X_{1}$. We have

$$
\left.\begin{array}{l}
Y=X_{1}+X_{2} \\
Z=X_{1}
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Z \\
X_{2}=Y-Z
\end{array}\right.
$$

The Jacobian of this transform is 1 , so we conclude from the transformation result that for all (y, z)

$$
f_{Y, Z}(y, z)=f_{X_{1}, X_{2}}(z, y-z)
$$

and hence, marginalizing z, we see that

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y, Z}(y, z) d z=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}(z, y-z) d z
$$

which we may rewrite

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right) d x_{1} .
$$

NOTES:

1. It is important to record the support of the new variable Y when recording the form of f_{Y}.
2. The marginalization over x_{1} must take into account the support of $f_{X_{1}, X_{2}}$: that is, for any fixed y only contributions to the sum or integral where

$$
f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)>0 .
$$

