
556: MATHEMATICAL STATISTICS I

SOME NOTES ON CHARACTERISTIC FUNCTIONS

The characteristic function for a random variable X with pmf/pdf fX is defined for t ∈ R as

ϕX(t) = EX [e
itX ] = EX [cos(tX) + i sin(tX)]

= EX [cos(tX)] + iEX [sin(tX)].

In general ϕX(t) is a complex-valued function. If X is discrete, taking values on X = {x1, x2, . . .}

EX [cos(tX)] =
∞∑
j=1

cos(txj)fX(xj)

EX [sin(tX)] =

∞∑
j=1

sin(txj)fX(xj)

Now,

∞∑
j=1

cos(txj)fX(xj) ≤

∣∣∣∣∣∣
∞∑
j=1

cos(txj)fX(xj)

∣∣∣∣∣∣ ≤
∞∑
j=1

| cos(txj)|fX(xj) ≤
∞∑
j=1

fX(xj) = 1

with a similar result for sin, so the two expectations are finite, so ϕX(t) exists. The same argument
works for X continuous, where

ϕX(t) =

∫ ∞
−∞

eitxfX(x) dx =

∫ ∞
−∞

cos(tx)fX(x) dx+ i

∫ ∞
−∞

sin(tx)fX(x) dx

EXAMPLE Double-Exponential (or Laplace) distribution

fX(x) =
1

2
e−|x| x ∈ R

Then
ϕX(t) =

∫ ∞
−∞

eitx
1

2
e−|x| dx =

∫ ∞
0

cos(tx)e−x dx. (1)

Integrating by parts we have

ϕX(t) =
[
− cos(tx)e−x

]∞
0

+

∫ ∞
0

t sin(tx)e−x dx

= 1 +
[
−t sin(tx)e−x

]∞
0
−
∫ ∞
0

t2 cos(tx)e−x dx

= 1− t2ϕX(t)

Therefore
ϕX(t) =

1

1 + t2
.
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EXAMPLE Normal distribution

fX(x) =
1√
2π
e−x

2/2 x ∈ R

Then
ϕX(t) =

∫ ∞
−∞

eitx
1√
2π
e−x

2/2 dx.

Completing the square

ϕX(t) =

∫ ∞
−∞

1√
2π
e−(x−it)

2/2e−t
2/2 dx.

Therefore
ϕX(t) = e−t

2/2.

The following results also hold:

• ϕX(t) is continuous for all t; this follows as cos and sin are continuous functions of x, and sums
and integrals of continuous functions are also continuous. In fact, we can prove the stronger
result that ϕX(t) is uniformly continuous on R.
• ϕX(t) is bounded in modulus by 1, as

|ϕX(t)| ≤ EX [|eitX |] = EX [1] = 1

• The derivatives of ϕX(t) are not guaranteed to be finite; we can consider

ϕ
(r)
X (t) =

dr

dtr
{ϕX(t)}

but this quantity may not be defined, or finite, at any given t; if r = 1

ϕ
(1)
X (t) = EX [−X sin(tX)] + iEX [X cos(tX)].

but there is no guarantee that either expectation is finite. For example, for the Cauchy distribution

ϕX(t) = e−|t|

which has undefined derivative at t = 0.

INVERSION FORMULA
A general inversion formula in 1-D gives the method via which fX or FX can be computed from ϕX .

• Let FX(x) be defined by

FX(x) =
1

2

{
FX(x) + lim

y−→x−
FX(y)

}
.

Then for a < b

FX(b)− FX(a) =
1

2π
lim

T−→∞

∫ T

−T

(
e−iat − e−ibt

it

)
ϕX(t) dt

• For an alternative statement, let a and a+ h for h > 0 be continuity points of FX . Then

FX(a+ h)− FX(a) =
1

2π
lim

T−→∞

∫ T

−T

(
1− e−ith

it

)
e−itaϕX(t) dt
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In certain circumstances we may compute fX from ϕX more straightforwardly.

(I) If X is discrete taking values on the integers. Then

ϕX(t) =
∞∑

x=−∞
eitxfX(x).

For integer j ∫ π

−π
ei(j−x)t dt =

{
2π if x = j

0 if x 6= j

Thus for any fixed x

1

2π

∫ π

−π
e−ixtϕX(t)dt =

1

2π

∫ π

−π
e−ixt


∞∑

j=−∞
eitjfX(j)

 dt =
1

2π

∞∑
j=−∞

{∫ π

−π
ei(j−x)t dt

}
fX(j) = fX(x)

(as only the term when j = x is non-zero in the sum) so we have the inversion formula: for x ∈ Z

fX(x) =
1

2π

∫ π

−π
e−ixtϕX(t) dt.

(II) If X is continuous and absolutely integrable∫ ∞
−∞
|ϕX(t)| dt <∞

then
fX(x) =

1

2π

∫ ∞
−∞

e−itxϕX(t) dt

EXAMPLE Suppose that for t ∈ R,
ϕX(t) = e−|t|.

Clearly this function is absolutely integrable, so we have

fX(x) =
1

2π

∫ ∞
−∞

e−itxe−|t| dt =
1

π

∫ ∞
0

cos(tx)e−t dt

=
1

π

1

1 + x2

by the result in equation (1). Hence X ∼ Cauchy.

DIAGNOSING DISCRETE OR CONTINUOUS DISTRIBUTIONS

(I) If
lim sup
|t|−→∞

|ϕX(t)| = 1

then X is often a discrete random variable. Technically, X may also have a singular distribution:
see, or example

www.math.mcgill.ca/dstephens/556/Papers/Koopmans.pdf
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but such distributions are rarely encountered in practice.

(II) If
lim sup
|t|−→∞

|ϕX(t)| = 0

then X is continuous; consequently, if

lim
|t|−→∞

|ϕX(t)| = 0

then X is continuous.

INTERPRETING THE CHARACTERISTIC FUNCTION.
To get a further understanding of characteristic function, we consider the inversion formulae. For
discrete random variables defined on the integers, we have

fX(x) =
1

2π

∫ π

−π
e−ixtϕX(t) dt =

1

2π

∫ π

−π
[cos(xt)− i sin(xt)]ϕX(t) dt

One way to think about this integral is via a discrete approximation; fix

tj,N = −π +
2πj

N
j = 0, 1, 2, . . . , N

and write

fX(x) l
1

2π


N∑
j=0

cos(xtj,N )ϕX(tj,N )− i
N∑
j=0

sin(xtj,N )ϕX(tj,N )


(I) Suppose fX is degenerate at x0, that is,

fX(x) =

{
1 x = x0

0 x 6= x0

Then by elementary calculations

ϕX(t) = cos(x0t) + i sin(x0t)

so that
Re(ϕX(t)) = cos(x0t) Im(ϕX(t)) = sin(x0t)

that is, pure sinusoids with period 2π/x0.

(II) Suppose fX is discrete, then as above

ϕX(t) =

∞∑
j=1

cos(txj)fX(xj) + i

∞∑
j=1

sin(txj)fX(xj)

so that

Re(ϕX(t)) =
∞∑
j=1

cos(txj)fX(xj) Im(ϕX(t)) =

∞∑
j=1

sin(txj)fX(xj)

that is, a weighted sum of pure sinusoids with period 2π/x1, 2π/x2, . . ., with weights determined
by fX

4


