556: Mathematical Statistics I

Some notes on Characteristic Functions

The characteristic function for a random variable X with $\mathrm{pmf} / \mathrm{pdf} f_{X}$ is defined for $t \in \mathbb{R}$ as

$$
\begin{aligned}
\varphi_{X}(t)=\mathbb{E}_{X}\left[e^{i t X}\right] & =\mathbb{E}_{X}[\cos (t X)+i \sin (t X)] \\
& =\mathbb{E}_{X}[\cos (t X)]+i \mathbb{E}_{X}[\sin (t X)] .
\end{aligned}
$$

In general $\varphi_{X}(t)$ is a complex-valued function. If X is discrete, taking values on $\mathbb{X}=\left\{x_{1}, x_{2}, \ldots\right\}$

$$
\begin{aligned}
\mathbb{E}_{X}[\cos (t X)] & =\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right) \\
\mathbb{E}_{X}[\sin (t X)] & =\sum_{j=1}^{\infty} \sin \left(t x_{j}\right) f_{X}\left(x_{j}\right)
\end{aligned}
$$

Now,

$$
\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right) \leq\left|\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right)\right| \leq \sum_{j=1}^{\infty}\left|\cos \left(t x_{j}\right)\right| f_{X}\left(x_{j}\right) \leq \sum_{j=1}^{\infty} f_{X}\left(x_{j}\right)=1
$$

with a similar result for sin, so the two expectations are finite, so $\varphi_{X}(t)$ exists. The same argument works for X continuous, where

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty} e^{i t x} f_{X}(x) d x=\int_{-\infty}^{\infty} \cos (t x) f_{X}(x) d x+i \int_{-\infty}^{\infty} \sin (t x) f_{X}(x) d x
$$

Example Double-Exponential (or Laplace) distribution

$$
f_{X}(x)=\frac{1}{2} e^{-|x|} \quad x \in \mathbb{R}
$$

Then

$$
\begin{equation*}
\varphi_{X}(t)=\int_{-\infty}^{\infty} e^{i t x} \frac{1}{2} e^{-|x|} d x=\int_{0}^{\infty} \cos (t x) e^{-x} d x \tag{1}
\end{equation*}
$$

Integrating by parts we have

$$
\begin{aligned}
\varphi_{X}(t) & =\left[-\cos (t x) e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} t \sin (t x) e^{-x} d x \\
& =1+\left[-t \sin (t x) e^{-x}\right]_{0}^{\infty}-\int_{0}^{\infty} t^{2} \cos (t x) e^{-x} d x \\
& =1-t^{2} \varphi_{X}(t)
\end{aligned}
$$

Therefore

$$
\varphi_{X}(t)=\frac{1}{1+t^{2}} .
$$

Example Normal distribution

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad x \in \mathbb{R}
$$

Then

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty} e^{i t x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

Completing the square

$$
\varphi_{X}(t)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-i t)^{2} / 2} e^{-t^{2} / 2} d x
$$

Therefore

$$
\varphi_{X}(t)=e^{-t^{2} / 2} .
$$

The following results also hold:

- $\varphi_{X}(t)$ is continuous for all t; this follows as cos and \sin are continuous functions of x, and sums and integrals of continuous functions are also continuous. In fact, we can prove the stronger result that $\varphi_{X}(t)$ is uniformly continuous on \mathbb{R}.
- $\varphi_{X}(t)$ is bounded in modulus by 1 , as

$$
\left|\varphi_{X}(t)\right| \leq \mathbb{E}_{X}\left[\left|e^{i t X}\right|\right]=\mathbb{E}_{X}[1]=1
$$

- The derivatives of $\varphi_{X}(t)$ are not guaranteed to be finite; we can consider

$$
\varphi_{X}^{(r)}(t)=\frac{d^{r}}{d t^{r}}\left\{\varphi_{X}(t)\right\}
$$

but this quantity may not be defined, or finite, at any given t; if $r=1$

$$
\varphi_{X}^{(1)}(t)=\mathbb{E}_{X}[-X \sin (t X)]+i \mathbb{E}_{X}[X \cos (t X)] .
$$

but there is no guarantee that either expectation is finite. For example, for the Cauchy distribution

$$
\varphi_{X}(t)=e^{-|t|}
$$

which has undefined derivative at $t=0$.

Inversion Formula

A general inversion formula in 1-D gives the method via which f_{X} or F_{X} can be computed from φ_{X}.

- Let $\bar{F}_{X}(x)$ be defined by

$$
\bar{F}_{X}(x)=\frac{1}{2}\left\{F_{X}(x)+\lim _{y \longrightarrow x^{-}} F_{X}(y)\right\} .
$$

Then for $a<b$

$$
\bar{F}_{X}(b)-\bar{F}_{X}(a)=\frac{1}{2 \pi} \lim _{T \longrightarrow \infty} \int_{-T}^{T}\left(\frac{e^{-i a t}-e^{-i b t}}{i t}\right) \varphi_{X}(t) d t
$$

- For an alternative statement, let a and $a+h$ for $h>0$ be continuity points of F_{X}. Then

$$
F_{X}(a+h)-F_{X}(a)=\frac{1}{2 \pi} \lim _{T \rightarrow \infty} \int_{-T}^{T}\left(\frac{1-e^{-i t h}}{i t}\right) e^{-i t a} \varphi_{X}(t) d t
$$

In certain circumstances we may compute f_{X} from φ_{X} more straightforwardly.
(I) If X is discrete taking values on the integers. Then

$$
\varphi_{X}(t)=\sum_{x=-\infty}^{\infty} e^{i t x} f_{X}(x)
$$

For integer j

$$
\int_{-\pi}^{\pi} e^{i(j-x) t} d t=\left\{\begin{array}{cl}
2 \pi & \text { if } x=j \\
0 & \text { if } x \neq j
\end{array}\right.
$$

Thus for any fixed x
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t} \varphi_{X}(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t}\left\{\sum_{j=-\infty}^{\infty} e^{i t j} f_{X}(j)\right\} d t=\frac{1}{2 \pi} \sum_{j=-\infty}^{\infty}\left\{\int_{-\pi}^{\pi} e^{i(j-x) t} d t\right\} f_{X}(j)=f_{X}(x)$
(as only the term when $j=x$ is non-zero in the sum) so we have the inversion formula: for $x \in \mathbb{Z}$

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t} \varphi_{X}(t) d t
$$

(II) If X is continuous and absolutely integrable

$$
\int_{-\infty}^{\infty}\left|\varphi_{X}(t)\right| d t<\infty
$$

then

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \varphi_{X}(t) d t
$$

Example Suppose that for $t \in \mathbb{R}$,

$$
\varphi_{X}(t)=e^{-|t|}
$$

Clearly this function is absolutely integrable, so we have

$$
\begin{aligned}
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} e^{-|t|} d t & =\frac{1}{\pi} \int_{0}^{\infty} \cos (t x) e^{-t} d t \\
& =\frac{1}{\pi} \frac{1}{1+x^{2}}
\end{aligned}
$$

by the result in equation (1). Hence $X \sim$ Cauchy.

Diagnosing Discrete or Continuous Distributions

(I) If

$$
\limsup _{|t| \longrightarrow \infty}\left|\varphi_{X}(t)\right|=1
$$

then X is often a discrete random variable. Technically, X may also have a singular distribution: see, or example
but such distributions are rarely encountered in practice.
(II) If

$$
\limsup _{|t| \rightarrow \infty}\left|\varphi_{X}(t)\right|=0
$$

then X is continuous; consequently, if

$$
\lim _{|t| \longrightarrow \infty}\left|\varphi_{X}(t)\right|=0
$$

then X is continuous.

Interpreting the characteristic function.

To get a further understanding of characteristic function, we consider the inversion formulae. For discrete random variables defined on the integers, we have

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i x t} \varphi_{X}(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi}[\cos (x t)-i \sin (x t)] \varphi_{X}(t) d t
$$

One way to think about this integral is via a discrete approximation; fix

$$
t_{j, N}=-\pi+\frac{2 \pi j}{N} \quad j=0,1,2, \ldots, N
$$

and write

$$
f_{X}(x) \bumpeq \frac{1}{2 \pi}\left\{\sum_{j=0}^{N} \cos \left(x t_{j, N}\right) \varphi_{X}\left(t_{j, N}\right)-i \sum_{j=0}^{N} \sin \left(x t_{j, N}\right) \varphi_{X}\left(t_{j, N}\right)\right\}
$$

(I) Suppose f_{X} is degenerate at x_{0}, that is,

$$
f_{X}(x)= \begin{cases}1 & x=x_{0} \\ 0 & x \neq x_{0}\end{cases}
$$

Then by elementary calculations

$$
\varphi_{X}(t)=\cos \left(x_{0} t\right)+i \sin \left(x_{0} t\right)
$$

so that

$$
\operatorname{Re}\left(\varphi_{X}(t)\right)=\cos \left(x_{0} t\right) \quad \operatorname{Im}\left(\varphi_{X}(t)\right)=\sin \left(x_{0} t\right)
$$

that is, pure sinusoids with period $2 \pi / x_{0}$.
(II) Suppose f_{X} is discrete, then as above

$$
\varphi_{X}(t)=\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right)+i \sum_{j=1}^{\infty} \sin \left(t x_{j}\right) f_{X}\left(x_{j}\right)
$$

so that

$$
\operatorname{Re}\left(\varphi_{X}(t)\right)=\sum_{j=1}^{\infty} \cos \left(t x_{j}\right) f_{X}\left(x_{j}\right) \quad \operatorname{Im}\left(\varphi_{X}(t)\right)=\sum_{j=1}^{\infty} \sin \left(t x_{j}\right) f_{X}\left(x_{j}\right)
$$

that is, a weighted sum of pure sinusoids with period $2 \pi / x_{1}, 2 \pi / x_{2}, \ldots$, with weights determined by f_{X}

