556: MATHEMATICAL STATISTICS I

Some Inequalities

JENSEN'S INEQUALITY

Jensen's Inequality gives a lower bound on expectations of convex functions. Recall that a function g(x) is **convex** if, for $0 < \lambda < 1$,

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y)$$

for all *x* and *y*. Alternatively, if the derivatives are well-defined, function g(x) is **convex** if for all *x*, $g''(x) \ge 0$. Finally, g(x) is **concave** if -g(x) is convex.

We may use the general definition of convexity to prove the result by using the fact that the distribution F_X can be viewed as a limiting function derived from a sequence of discrete cdfs. We have that g(x) is convex if, for $n \ge 2$ and constants λ_i , i = 1, ..., n, with $0 < \lambda_i < 1$, and $\lambda_1 + \cdots + \lambda_n = 1$

$$g\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right) \leq \sum_{i=1}^{n}\lambda_{i}g\left(x_{i}\right)$$

for all vectors (x_1, \ldots, x_n) ; this follows by induction using the original definition. We may regard this statement as stating

$$g\left(\mathbb{E}_{F_n}[X]\right) \le \mathbb{E}_{F_n}[g(X)] \tag{1}$$

where

$$\mathbb{E}_{F_n}[X] = \int x \, \mathrm{d}F_n(x) \qquad \mathbb{E}_{F_n}[g(X)] = \int g(x) \, \mathrm{d}F_n(x)$$

where F_n is the cdf of the discrete distribution on $\{x_1, \ldots, x_n\}$ with associated probability masses $\{\lambda_1, \ldots, \lambda_n\}$, that is,

$$F_n(x) = \sum_{i=1}^n \lambda_i \mathbb{1}_{[x_i,\infty)}(x).$$

Now, for any F_X , we can find infinite sequences $\{(x_i, \lambda_i), i = 1, 2, ...\}$ such that for all x

$$\lim_{n \to \infty} F_n(x) = F_X(x)$$

– this is stated pointwise here, but convergence functionwise also holds. Also, as *g* is convex, it is also continuous. Therefore we may pass limits through the integrals and note that

$$\lim_{n \to \infty} \mathbb{E}_{F_n}[X] = \mathbb{E}_X[X] \qquad \lim_{n \to \infty} \mathbb{E}_{F_n}[g(X)] = \mathbb{E}_X[g(X)]$$

which yields Jensen's inequality by substitution into (1).

Theorem (JENSEN'S INEQUALITY – differentiable case)

Suppose that *X* is a random variable with expectation μ , and function *g* is convex and finite. Then

$$\mathbb{E}_X\left[g(X)\right] \ge g(\mathbb{E}_X\left[X\right])$$

with equality if and only if g(x) is linear, that is for every line a + bx that is a tangent to g at μ

$$P_X[g(X) = a + bX] = 1.$$

Proof Let l(x) = a + bx be the equation of the tangent at $x = \mu$. Then, for each $x, g(x) \ge a + bx$ as in the figure. Thus

$$\mathbb{E}_X[g(X)] \ge \mathbb{E}_X[a+bX] = a + b\mathbb{E}_X[X] = l(\mu) = g(\mu) = g(\mathbb{E}_X[X])$$

as required. Also, if g(x) is linear, then equality follows by properties of expectations. Suppose that

$$\mathbb{E}_X \left[g(X) \right] = g(\mathbb{E}_X \left[X \right]) = g(\mu)$$

but g(x) is convex, but not linear. Let l(x) = a + bx be the tangent to g at μ . Then by convexity

$$g(x) - l(x) > 0$$
 \therefore $\int (g(x) - l(x)) \, \mathrm{d}F_X(x) = \int g(x) \, \mathrm{d}F_X(x) - \int l(x) \, \mathrm{d}F_X(x) > 0$

and hence $\mathbb{E}_X[g(X)] > \mathbb{E}_X[l(X)]$; but l(x) is linear, so $\mathbb{E}_X[l(X)] = a + b\mathbb{E}_X[X] = g(\mu)$, yielding the contradiction

$$\mathbb{E}_X[g(X)] > g(\mathbb{E}_X[X]).$$

and the result follows.

Another way to view this result using the tangent idea is to note that for $x_1, x_2 \in \mathbb{R}$, by convexity

$$g(x_2) \ge g(x_1) + g'(x_1)(x_2 - x_1)$$

from which we can apply the same idea and evaluate for $x_1 = \mu$.

- If g(x) is concave, then E_X [g(X)] ≤ g(E_X [X])
 g(x) = x² is convex, thus E_X [X²] ≥ {E_X [X]}²
 g(x) = log x is concave, thus E_X [log X] ≤ log {E_X [X]}

CAUCHY-SCHWARZ INEQUALITY

Theorem

For random variable *X* and functions $g_1()$ and $g_2()$, we have that

$$\{\mathbb{E}_X[g_1(X)g_2(X)]\}^2 \le \mathbb{E}_X[\{g_1(X)\}^2]\mathbb{E}_X[\{g_2(X)\}^2]$$
(2)

with equality if and only if either $\mathbb{E}_X[\{g_1(X)\}^2] = 0$ or $\mathbb{E}_X[\{g_2(X)\}^2] = 0$, or

$$P_X[g_1(X) = cg_2(X)] = 1$$

for some $c \neq 0$.

Proof Let $X_1 = g_1(X)$ and $X_2 = g_2(X)$, and let

$$Y_1 = aX_1 + bX_2$$
 $Y_2 = aX_1 - bX_2$

and as $\mathbb{E}_{Y_1}[Y_1^2], \mathbb{E}_{Y_2}[Y_2^2] \ge 0$, we have that

$$a^{2}\mathbb{E}_{X}[X_{1}^{2}] + b^{2}\mathbb{E}_{X}[X_{2}^{2}] + 2ab\mathbb{E}_{X}[X_{1}X_{2}] \ge 0$$
$$a^{2}\mathbb{E}_{X}[X_{1}^{2}] + b^{2}\mathbb{E}_{X}[X_{2}^{2}] - 2ab\mathbb{E}_{X}[X_{1}X_{2}] \ge 0$$

Set $a^2 = \mathbb{E}_X[X_2^2]$ and $b^2 = \mathbb{E}_X[X_1^2]$. If either *a* or *b* is zero, the inequality clearly holds. We may thus consider $\mathbb{E}_X[X_1^2], \mathbb{E}_X[X_2^2] > 0$: we have

$$2\mathbb{E}_{X}[X_{1}^{2}]\mathbb{E}_{X}[X_{2}^{2}] + 2\{\mathbb{E}_{X}[X_{1}^{2}]\mathbb{E}_{X}[X_{2}^{2}]\}^{1/2}\mathbb{E}_{X}[X_{1}X_{2}] \ge 0$$

$$2\mathbb{E}_{X}[X_{1}^{2}]\mathbb{E}_{X}[X_{2}^{2}] - 2\{\mathbb{E}_{X}[X_{1}^{2}]\mathbb{E}_{X}[X_{2}^{2}]\}^{1/2}\mathbb{E}_{X}[X_{1}X_{2}] \ge 0$$

Rearranging, we obtain that

$$-\{\mathbb{E}_X[X_1^2]\mathbb{E}_X[X_2^2]\}^{1/2} \le \mathbb{E}_X[X_1X_2] \le \{\mathbb{E}_X[X_1^2]\mathbb{E}_X[X_2^2]\}^{1/2}$$

that is $\{\mathbb{E}_X[X_1X_2]\}^2 \leq \mathbb{E}_X[X_1^2]\mathbb{E}_X[X_2^2]$ or, in the original form

$$\{\mathbb{E}_X[g_1(X)g_2(X)]\}^2 \le \mathbb{E}_X[\{g_1(X)\}^2]\mathbb{E}_X[\{g_2(X)\}^2].$$

We examine the case of equality:

$$\{\mathbb{E}_X[g_1(X)g_2(X)]\}^2 = \mathbb{E}_X[\{g_1(X)\}^2]\mathbb{E}_X[\{g_2(X)\}^2]$$
(3)

If $\mathbb{E}_X[\{g_j(X)\}^2] = 0$ for j = 1 or 2, then $g_j(X)$ is zero with probability one, say $P_X[g_j(X) = 0] = 1$. Clearly the left-hand side of (2) is non-negative, so we must have equality as the right-hand side is zero. So suppose $\mathbb{E}_X[\{g_j(X)\}^2] > 0$ for j = 1, 2, but $g_1(X) = cg_2(X)$ with probability one for some $c \neq 0$. In this case we replace $g_1(X)$ in the left- and right- hand sides of (2) to conclude that

$$\{\mathbb{E}_X[cg_2(X)^2]\}^2 = \mathbb{E}_X[\{cg_2(X)\}^2]\mathbb{E}_X[\{g_2(X)\}^2] = c^2\mathbb{E}_X[\{g_2(X)\}^2]$$

and equality follows.

For the converse, assume that (3) holds. If both sides equate to zero, then we must have at least one term on the right-hand side equal to zero, so $\mathbb{E}_X[\{g_j(X)\}^2] = 0$ for j = 1 or 2. If both sides equate to a positive constant then both $\mathbb{E}_X[\{g_j(X)\}^2] > 0$. By assumption, we may write

$$\mathbb{E}_{X}[\{g_{1}(X)\}^{2}] = \frac{\{\mathbb{E}_{X}[g_{1}(X)g_{2}(X)]\}^{2}}{\mathbb{E}_{X}[\{g_{2}(X)\}^{2}]}$$

say. Let $Z = g_1(X) - cg_2(X)$. For a contradiction, assume that Z is not zero with probability 1: we have

$$\mathbb{E}[Z^2] = \mathbb{E}[\{g_1(X)\}^2] + c^2 \mathbb{E}[\{g_2(X)\}^2] - 2c \mathbb{E}[g_1(X)g_2(X)]$$

which is strictly positive. However the right hand side can be written,

$$\mathbb{E}[\{g_1(X)\}^2] + \left(c\{\mathbb{E}[\{g_2(X)\}^2]\}^{1/2} - \frac{\mathbb{E}[g_1(X)g_2(X)]}{\{\mathbb{E}[\{g_2(X)\}^2]\}^{1/2}}\right)^2 - \left(\frac{\mathbb{E}[g_1(X)g_2(X)]}{\{\mathbb{E}[\{g_2(X)\}^2]\}^{1/2}}\right)^2$$

Now if we set

$$c = \frac{\mathbb{E}[g_1(X)g_2(X)]}{\mathbb{E}[\{g_2(X)\}^2]}$$

the second term is zero, so we must then have

$$\mathbb{E}[\{g_1(X)\}^2] - \frac{\{\mathbb{E}[g_1(X)g_2(X)]\}^2}{\mathbb{E}[\{g_2(X)\}^2]} > 0$$

but this contradicts assumption (3). Hence Z must be zero with probability 1, that is

$$g_1(X) = cg_2(X)$$

with probability 1.

HÖLDER'S INEQUALITY

Lemma Let a, b > 0 and p, q > 1 satisfy

$$p^{-1} + q^{-1} = 1. (4)$$

Then

$$p^{-1} a^p + q^{-1} b^q \ge ab$$

with equality if and only if $a^p = b^q$.

Proof Fix b > 0. Let

$$g(a;b) = p^{-1} a^p + q^{-1} b^q - ab$$

We require that $g(a; b) \ge 0$ for all a. Differentiating wrt a for fixed b yields $g^{(1)}(a; b) = a^{p-1} - b$, so that g(a; b) is minimized (the second derivative is strictly positive at all a) when $a^{p-1} = b$, and at this value of a, the function takes the value

$$p^{-1} a^{p} + q^{-1} (a^{p-1})^{q} - a(a^{p-1}) = p^{-1} a^{p} + q^{-1} a^{p} - a^{p} = 0$$

as, by equation (4), $1/p + 1/q = 1 \implies (p-1)q = p$. As the second derivative is strictly positive at all a, the minimum is attained at the **unique** value of a where $a^{p-1} = b$, where, raising both sides to power q yields $a^p = b^q$.

Theorem (HÖLDER'S INEQUALITY)

Suppose that *X* and *Y* are two random variables, and p, q > 1 satisfy (4). Then

$$|\mathbb{E}_{X,Y}[XY]| \le \mathbb{E}_{X,Y}[|XY|] \le \{\mathbb{E}_X[|X|^p]\}^{1/p} \{\mathbb{E}_Y[|Y|^q]\}^{1/q}$$

Proof (Absolutely continuous case: discrete case similar) For the first inequality,

$$\mathbb{E}_{X,Y}[|XY|] = \iint |xy| f_{X,Y}(x,y) \ dx \ dy \ge \iint xy f_{X,Y}(x,y) \ dx \ dy = \mathbb{E}_{X,Y}[XY]$$

and

$$\mathbb{E}_{X,Y}[XY] = \iint xy f_{X,Y}(x,y) \ dx \ dy \ge \iint -|xy| f_{X,Y}(x,y) \ dx \ dy = -\mathbb{E}_{X,Y}[|XY|]$$

so

$$-\mathbb{E}_{X,Y}[|XY|] \le \mathbb{E}_{X,Y}[XY] \le \mathbb{E}_{X,Y}[|XY|] \qquad \therefore \qquad |\mathbb{E}_{X,Y}[XY]| \le \mathbb{E}_{X,Y}[|XY|]$$

For the second inequality, set

$$a = \frac{|X|}{\{\mathbb{E}_X[|X|^p]\}^{1/p}} \qquad b = \frac{|Y|}{\{\mathbb{E}_Y[|Y|^q]\}^{1/q}}.$$

Then from the previous lemma

$$p^{-1} \frac{|X|^p}{\mathbb{E}_X[|X|^p]} + q^{-1} \frac{|Y|^q}{\mathbb{E}_Y[|Y|^q]} \ge \frac{|XY|}{\{\mathbb{E}_X[|X|^p]\}^{1/p} \{\mathbb{E}_Y[|Y|^q]\}^{1/q}}$$

and taking expectations yields, on the left hand side,

$$p^{-1} \frac{\mathbb{E}_X[|X|^p]}{\mathbb{E}_X[|X|^p]} + q^{-1} \frac{\mathbb{E}_Y[|Y|^q]}{\mathbb{E}_Y[|Y|^q]} = p^{-1} + q^{-1} = 1$$

and on the right hand side

$$\frac{\mathbb{E}_{X,Y}[|XY|]}{\left\{\mathbb{E}_X[|X|^p]\right\}^{1/p}\left\{\mathbb{E}_Y[|Y|^q]\right\}^{1/q}}$$

and the result follows.

Note: here we have equality if and only if

$$P_{X,Y}[|X|^p = c|Y|^q] = 1$$

for some non zero constant *c*.

Theorem (CAUCHY-SCHWARZ INEQUALITY REVISITED)

Suppose that *X* and *Y* are two random variables.

$$|\mathbb{E}_{X,Y}[XY]| \le \mathbb{E}_{X,Y}[|XY|] \le \left\{\mathbb{E}_X[|X|^2]\right\}^{1/2} \left\{\mathbb{E}_Y[|Y|^2]\right\}^{1/2}$$

Proof Set p = q = 2 in the Hölder Inequality.

Corollaries:

(a) Let μ_X and μ_Y denote the expectations of *X* and *Y* respectively. Then, by the Cauchy-Schwarz inequality

$$|\mathbb{E}_{X,Y}[(X-\mu_X)(Y-\mu_Y)]| \le \left\{\mathbb{E}_X[(X-\mu_X)^2]\right\}^{1/2} \left\{\mathbb{E}_Y[(Y-\mu_Y)^2]\right\}^{1/2}$$

so that

$$\mathbb{E}_{X,Y}[(X-\mu_X)(Y-\mu_Y)] \le \mathbb{E}_X[(X-\mu_X)^2]\mathbb{E}_Y[(Y-\mu_Y)^2]$$

and hence, defining the left-hand side as the **covariance** between *X* and *Y*, $Cov_{X,Y}[X, Y]$, we have

$$\{\operatorname{Cov}_{X,Y}[X,Y]\}^2 \le \operatorname{Var}_X[X]\operatorname{Var}_Y[Y].$$

(b) Lyapunov's Inequality: Define Y = 1 with probability one. Then, for 1

 $\mathbb{E}_X[|X|] \le \{\mathbb{E}_X[|X|^p]\}^{1/p}.$

Let 1 < r < p. Then

 $\mathbb{E}_{X}[|X|^{r}] \leq \{\mathbb{E}_{X}[|X|^{pr}]\}^{1/p}$ and letting s = pr > r yields $\mathbb{E}_{X}[|X|^{r}] \leq \{\mathbb{E}_{X}[|X|^{s}]\}^{r/s}$ so that $\{\mathbb{E}_{X}[|X|^{r}]\}^{1/r} \leq \{\mathbb{E}_{X}[|X|^{s}]\}^{1/s}$ for $1 < r < s < \infty$.

Theorem (MINKOWSKI'S INEQUALITY)

Suppose that *X* and *Y* are two random variables, and $1 \le p < \infty$. Then

$$\{\mathbb{E}_{X,Y}[|X+Y|^p]\}^{1/p} \le \{\mathbb{E}_X[|X|^p]\}^{1/p} + \{\mathbb{E}_Y[|Y|^p]\}^{1/p}$$

Proof Write

$$\mathbb{E}_{X,Y}[|X+Y|^{p}] = \mathbb{E}_{X,Y}[|X+Y||X+Y|^{p-1}]$$

$$\leq \mathbb{E}_{X,Y}[|X||X+Y|^{p-1}] + \mathbb{E}_{X,Y}[|Y||X+Y|^{p-1}]$$

by the triangle inequality $|x + y| \le |x| + |y|$. Using Hölder's Inequality on the terms on the right hand side, for *q* selected to satisfy 1/p + 1/q = 1,

$$\mathbb{E}_{X,Y}[|X+Y|^p] \le \left\{\mathbb{E}_X[|X|^p]\right\}^{1/p} \left\{\mathbb{E}_{X,Y}[|X+Y|^{q(p-1)}]\right\}^{1/q} + \left\{\mathbb{E}_Y[|Y|^p]\right\}^{1/p} \left\{\mathbb{E}_{X,Y}[|X+Y|^{q(p-1)}]\right\}^{1/q}$$

and dividing through by $\left\{\mathbb{E}_{X,Y}[|X+Y|^{q(p-1)}]\right\}^{1/q}$ yields

$$\frac{\mathbb{E}_{X,Y}[|X+Y|^p]}{\left\{\mathbb{E}_{X,Y}[|X+Y|^{q(p-1)}]\right\}^{1/q}} \le \left\{\mathbb{E}_X[|X|^p]\right\}^{1/p} + \left\{\mathbb{E}_Y[|Y|^p]\right\}^{1/p}$$

and the result follows as q(p-1) = p, and 1 - 1/q = 1/p.

Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV'S LEMMA) If *X* is a random variable, then for non-negative function *h*, and c > 0,

$$P_X[h(X) \ge c] \le \frac{\mathbb{E}_X[h(X)]}{c}$$

Proof (continuous case) : Suppose that *X* has density function f_X which is positive for $x \in \mathbb{X}$. Let $\mathcal{A} = \{x \in \mathbb{X} : h(x) \ge c\} \subseteq X$. Then, as $h(x) \ge c$ on \mathcal{A} ,

$$\mathbb{E}_X [h(X)] = \int h(x) f_X(x) \, dx = \int_{\mathcal{A}} h(x) f_X(x) \, dx + \int_{\mathcal{A}'} h(x) f_X(x) \, dx$$
$$\geq \int_{\mathcal{A}} h(x) f_X(x) \, dx$$
$$\geq \int_{\mathcal{A}} c f_X(x) \, dx = c P_X [X \in \mathcal{A}] = c P_X [h(X) \ge c]$$

and the result follows.

• SPECIAL CASE I - THE MARKOV INEQUALITY If $h(x) = |x|^r$ for r > 0, so

$$P_X\left[\left|X\right|^r \ge c\right] \le \frac{\mathbb{E}_X\left[\left|X\right|^r\right]}{c}.$$

Alternately stated (by Casella and Berger) as follows: If $P[Y \ge 0] = 1$ and P[Y = 0] < 1, then for any r > 0

$$P_Y[Y \ge r] \le \frac{\mathbb{E}_Y[Y]}{r}$$

with equality if and only if

$$P_Y[Y = r] = p = 1 - P_Y[Y = 0]$$

for some 0 .

• SPECIAL CASE II - THE CHEBYCHEV INEQUALITY

Suppose that *X* is a random variable with expectation μ and variance σ^2 . Then $h(x) = (x - \mu)^2$ and $c = k^2 \sigma^2$, for k > 0,

$$P_X\left[(X-\mu)^2 \ge k^2 \sigma^2\right] \le 1/k^2$$

or equivalently

$$P_X\left[|X-\mu| \ge k\sigma\right] \le 1/k^2.$$

Setting $\epsilon = k\sigma$ gives

$$P_X\left[|X-\mu| \ge \epsilon\right] \le \sigma^2/\epsilon^2$$

or equivalently

$$P_X\left[|X-\mu| < \epsilon\right] \ge 1 - \sigma^2/\epsilon^2.$$

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)

If $Z \sim \mathcal{N}(0, 1)$, then for t > 0

$$\sqrt{\frac{2}{\pi}} \frac{t}{1+t^2} e^{-t^2/2} \le P_Z[|Z| \ge t] \le \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^2/2}$$

Proof By symmetry, $P_Z[|Z| \ge t] = 2 P_Z[Z \ge t]$, so

$$P_Z[Z \ge t] = \left(\frac{1}{2\pi}\right)^{1/2} \int_t^\infty e^{-x^2/2} \, dx \le \left(\frac{1}{2\pi}\right)^{1/2} \int_t^\infty \frac{x}{t} e^{-x^2/2} \, dx = \left(\frac{1}{2\pi}\right)^{1/2} \frac{e^{-t^2/2}}{t}$$

Similarly, for t > 0,

$$\int_{t}^{\infty} e^{-x^{2}/2} dx \equiv \int_{t}^{\infty} \frac{x}{x} e^{-x^{2}/2} dx = \left[-\frac{1}{x} e^{-x^{2}/2} \right]_{t}^{\infty} - \int_{t}^{\infty} \frac{1}{x^{2}} e^{-x^{2}/2} dx \ge \frac{1}{t} e^{-t^{2}/2} - \frac{1}{t^{2}} \int_{t}^{\infty} e^{-x^{2}/2} dx$$

after writing 1 = x/x, then integrating by parts, and then noting that, on (t, ∞) , $x > t \iff 1/x^2 < 1/t^2$, and that the integrand is non-negative. Therefore, combining terms

$$\left(1+\frac{1}{t^2}\right)\int_t^\infty e^{-x^2/2} \, dx \ge \frac{1}{t} \, e^{-t^2/2}$$

and cross-multiplying by the positive term $t^2/(1+t^2)$ yields

$$\int_{t}^{\infty} e^{-x^{2}/2} dx \ge \frac{t}{1+t^{2}} e^{-t^{2}/2} \qquad \therefore \qquad P_{Z}[|Z| > t] \ge \sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2}/2}.$$

To see the quality of the approximation, the table below shows the values of the bounding values for t ranging from 1 to 5. Clearly the bounds improve as t gets larger.

t	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Lower	2.420e-01	1.196e-01	4.319e-02	1.209e-02	2.659e-03	4.610e-04	6.298e-05	6.770e-06	5.718e-07
True	3.173e-01	1.336e-01	4.550e-02	1.242e-02	2.700e-03	4.653e-04	6.334e-05	6.795e-06	5.733e-07
Upper	4.839e-01	1.727e-01	5.399e-02	1.402e-02	2.955e-03	4.987e-04	6.692e-05	7.104e-06	5.947e-07