
556: MATHEMATICAL STATISTICS I

SOME INEQUALITIES

JENSEN’S INEQUALITY
Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(x) is convex if, for 0 < λ < 1,

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for all x and y. Alternatively, if the derivatives are well-defined, function g(x) is convex if for all x,
g′′(x) ≥ 0. Finally, g(x) is concave if −g(x) is convex.

We may use the general definition of convexity to prove the result by using the fact that the distribution
FX can be viewed as a limiting function derived from a sequence of discrete cdfs. We have that g(x) is
convex if, for n ≥ 2 and constants λi, i = 1, . . . , n, with 0 < λi < 1, and λ1 + · · ·+ λn = 1

g

(
n∑

i=1

λixi

)
≤

n∑
i=1

λig (xi)

for all vectors (x1, . . . , xn); this follows by induction using the original definition. We may regard this
statement as stating

g (EFn [X]) ≤ EFn [g(X)] (1)

where
EFn [X] =

∫
x dFn(x) EFn [g(X)] =

∫
g(x) dFn(x)

where Fn is the cdf of the discrete distribution on {x1, . . . , xn} with associated probability masses
{λ1, . . . , λn}, that is,

Fn(x) =

n∑
i=1

λi1[xi,∞)(x).

Now, for any FX , we can find infinite sequences {(xi, λi), i = 1, 2, . . .} such that for all x

lim
n−→∞

Fn(x) = FX(x)

– this is stated pointwise here, but convergence functionwise also holds. Also, as g is convex, it is also
continuous. Therefore we may pass limits through the integrals and note that

lim
n−→∞

EFn [X] = EX [X] lim
n−→∞

EFn [g(X)] = EX [g(X)]

which yields Jensen’s inequality by substitution into (1).

Theorem (JENSEN’S INEQUALITY – differentiable case)
Suppose that X is a random variable with expectation µ, and function g is convex and finite. Then

EX [g(X)] ≥ g(EX [X])

with equality if and only if g(x) is linear, that is for every line a+ bx that is a tangent to g at µ

PX [g(X) = a+ bX] = 1.
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Proof Let l(x) = a + bx be the equation of the tangent at x = µ. Then, for each x, g(x) ≥ a + bx as in
the figure. Thus

EX [g(X)] ≥ EX [a+ bX] = a+ bEX [X] = l(µ) = g(µ) = g(EX [X])

as required. Also, if g(x) is linear, then equality follows by properties of expectations. Suppose that

EX [g(X)] = g(EX [X]) = g(µ)

but g(x) is convex, but not linear. Let l(x) = a+ bx be the tangent to g at µ. Then by convexity

g(x)− l(x) > 0 ∴
∫
(g(x)− l(x)) dFX(x) =

∫
g(x) dFX(x)−

∫
l(x) dFX(x) > 0

and hence EX [g(X)] > EX [l(X)]; but l(x) is linear, so EX [l(X)] = a + bEX [X] = g(µ), yielding the
contradiction

EX [g(X)] > g(EX [X]).

and the result follows.

Another way to view this result using the tangent idea is to note that for x1, x2 ∈ R, by convexity

g(x2) ≥ g(x1) + g′(x1)(x2 − x1)

from which we can apply the same idea and evaluate for x1 = µ.

• If g(x) is concave, then EX [g(X)] ≤ g(EX [X])
• g(x) = x2 is convex, thus EX

[
X2
]
≥ {EX [X]}2

• g(x) = log x is concave, thus EX [logX] ≤ log {EX [X]}
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CAUCHY-SCHWARZ INEQUALITY

Theorem
For random variable X and functions g1() and g2(), we have that

{EX [g1(X)g2(X)]}2 ≤ EX [{g1(X)}2]EX [{g2(X)}2] (2)

with equality if and only if either EX [{g1(X)}2] = 0 or EX [{g2(X)}2] = 0, or

PX [g1(X) = cg2(X)] = 1

for some c ̸= 0.

Proof Let X1 = g1(X) and X2 = g2(X), and let

Y1 = aX1 + bX2 Y2 = aX1 − bX2

and as EY1 [Y
2
1 ],EY2 [Y

2
2 ] ≥ 0, we have that

a2EX [X2
1 ] + b2EX [X2

2 ] + 2abEX [X1X2] ≥ 0

a2EX [X2
1 ] + b2EX [X2

2 ]− 2abEX [X1X2] ≥ 0

Set a2 = EX [X2
2 ] and b2 = EX [X2

1 ]. If either a or b is zero, the inequality clearly holds. We may thus
consider EX [X2

1 ],EX [X2
2 ] > 0: we have

2EX [X2
1 ]EX [X2

2 ] + 2{EX [X2
1 ]EX [X2

2 ]}1/2EX [X1X2] ≥ 0

2EX [X2
1 ]EX [X2

2 ]− 2{EX [X2
1 ]EX [X2

2 ]}1/2EX [X1X2] ≥ 0

Rearranging, we obtain that

−{EX [X2
1 ]EX [X2

2 ]}1/2 ≤ EX [X1X2] ≤ {EX [X2
1 ]EX [X2

2 ]}1/2

that is {EX [X1X2]}2 ≤ EX [X2
1 ]EX [X2

2 ] or, in the original form

{EX [g1(X)g2(X)]}2 ≤ EX [{g1(X)}2]EX [{g2(X)}2].

We examine the case of equality:

{EX [g1(X)g2(X)]}2 = EX [{g1(X)}2]EX [{g2(X)}2] (3)

If EX [{gj(X)}2] = 0 for j = 1 or 2, then gj(X) is zero with probability one, say PX [gj(X) = 0] = 1.
Clearly the left-hand side of (2) is non-negative, so we must have equality as the right-hand side is
zero. So suppose EX [{gj(X)}2] > 0 for j = 1, 2, but g1(X) = cg2(X) with probability one for some
c ̸= 0. In this case we replace g1(X) in the left- and right- hand sides of (2) to conclude that

{EX [cg2(X)2]}2 = EX [{cg2(X)}2]EX [{g2(X)}2] = c2EX [{g2(X)}2]

and equality follows.

For the converse, assume that (3) holds. If both sides equate to zero, then we must have at least one
term on the right-hand side equal to zero, so EX [{gj(X)}2] = 0 for j = 1 or 2. If both sides equate to a
positive constant then both EX [{gj(X)}2] > 0. By assumption, we may write

EX [{g1(X)}2] = {EX [g1(X)g2(X)]}2

EX [{g2(X)}2]
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say. Let Z = g1(X)−cg2(X). For a contradiction, assume that Z is not zero with probability 1: we have

E[Z2] = E[{g1(X)}2] + c2E[{g2(X)}2]− 2cE[g1(X)g2(X)]

which is strictly positive. However the right hand side can be written,

E[{g1(X)}2] +
(
c{E[{g2(X)}2]}1/2 − E[g1(X)g2(X)]

{E[{g2(X)}2]}1/2

)2

−
(

E[g1(X)g2(X)]

{E[{g2(X)}2]}1/2

)2

Now if we set

c =
E[g1(X)g2(X)]

E[{g2(X)}2]
the second term is zero, so we must then have

E[{g1(X)}2]− {E[g1(X)g2(X)]}2

E[{g2(X)}2]
> 0

but this contradicts assumption (3). Hence Z must be zero with probability 1, that is

g1(X) = cg2(X)

with probability 1.

HÖLDER’S INEQUALITY

Lemma Let a, b > 0 and p, q > 1 satisfy

p−1 + q−1 = 1. (4)

Then
p−1 ap + q−1 bq ≥ ab

with equality if and only if ap = bq.

Proof Fix b > 0. Let
g(a; b) = p−1 ap + q−1 bq − ab.

We require that g(a; b) ≥ 0 for all a. Differentiating wrt a for fixed b yields g(1)(a; b) = ap−1 − b, so that
g(a; b) is minimized (the second derivative is strictly positive at all a) when ap−1 = b, and at this value
of a, the function takes the value

p−1 ap + q−1 (ap−1)q − a(ap−1) = p−1 ap + q−1 ap − ap = 0

as, by equation (4), 1/p+ 1/q = 1 =⇒ (p− 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where ap−1 = b, where, raising both sides to power
q yields ap = bq.

Theorem (HÖLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, q > 1 satisfy (4). Then

|EX,Y [XY ]| ≤ EX,Y [|XY |] ≤ {EX [|X|p]}1/p {EY [|Y |q]}1/q

Proof (Absolutely continuous case: discrete case similar) For the first inequality,

EX,Y [|XY |] =
∫∫

|xy|fX,Y (x, y) dx dy ≥
∫∫

xyfX,Y (x, y) dx dy = EX,Y [XY ]
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and
EX,Y [XY ] =

∫∫
xyfX,Y (x, y) dx dy ≥

∫∫
−|xy|fX,Y (x, y) dx dy = −EX,Y [|XY |]

so
−EX,Y [|XY |] ≤ EX,Y [XY ] ≤ EX,Y [|XY |] ∴ |EX,Y [XY ]| ≤ EX,Y [|XY |].

For the second inequality, set

a =
|X|

{EX [|X|p]}1/p
b =

|Y |
{EY [|Y |q]}1/q

.

Then from the previous lemma

p−1 |X|p

EX [|X|p]
+ q−1 |Y |q

EY [|Y |q]
≥ |XY |

{EX [|X|p]}1/p {EY [|Y |q]}1/q

and taking expectations yields, on the left hand side,

p−1 EX [|X|p]
EX [|X|p]

+ q−1 EY [|Y |q]
EY [|Y |q]

= p−1 + q−1 = 1

and on the right hand side
EX,Y [|XY |]

{EX [|X|p]}1/p {EY [|Y |q]}1/q

and the result follows.

Note: here we have equality if and only if

PX,Y [|X|p = c|Y |q] = 1

for some non zero constant c.

Theorem (CAUCHY-SCHWARZ INEQUALITY REVISITED)
Suppose that X and Y are two random variables.

|EX,Y [XY ]| ≤ EX,Y [|XY |] ≤
{
EX [|X|2]

}1/2 {
EY [|Y |2]

}1/2
Proof Set p = q = 2 in the Hölder Inequality.

Corollaries:

(a) Let µX and µY denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz
inequality

|EX,Y [(X − µX)(Y − µY )]| ≤
{
EX [(X − µX)2]

}1/2 {
EY [(Y − µY )

2]
}1/2

so that
EX,Y [(X − µX)(Y − µY )] ≤ EX [(X − µX)2]EY [(Y − µY )

2]

and hence, defining the left-hand side as the covariance between X and Y , CovX,Y [X,Y ], we
have

{CovX,Y [X,Y ]}2 ≤ VarX [X] VarY [Y ].
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(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < ∞

EX [|X|] ≤ {EX [|X|p]}1/p .

Let 1 < r < p. Then
EX [|X|r] ≤ {EX [|X|pr]}1/p

and letting s = pr > r yields
EX [|X|r] ≤ {EX [|X|s]}r/s

so that
{EX [|X|r]}1/r ≤ {EX [|X|s]}1/s

for 1 < r < s < ∞.

Theorem (MINKOWSKI’S INEQUALITY)
Suppose that X and Y are two random variables, and 1 ≤ p < ∞. Then

{EX,Y [|X + Y |p]}1/p ≤ {EX [|X|p]}1/p + {EY [|Y |p]}1/p

Proof Write

EX,Y [|X + Y |p] = EX,Y [|X + Y ||X + Y |p−1]

≤ EX,Y [|X||X + Y |p−1] + EX,Y [|Y ||X + Y |p−1]

by the triangle inequality |x+ y| ≤ |x|+ |y|. Using Hölder’s Inequality on the terms on the right hand
side, for q selected to satisfy 1/p+ 1/q = 1,

EX,Y [|X + Y |p] ≤ {EX [|X|p]}1/p
{
EX,Y [|X + Y |q(p−1)]

}1/q
+ {EY [|Y |p]}1/p

{
EX,Y [|X + Y |q(p−1)]

}1/q

and dividing through by
{
EX,Y [|X + Y |q(p−1)]

}1/q
yields

EX,Y [|X + Y |p]{
EX,Y [|X + Y |q(p−1)]

}1/q ≤ {EX [|X|p]}1/p + {EY [|Y |p]}1/p

and the result follows as q(p− 1) = p, and 1− 1/q = 1/p.

Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV’S LEMMA) If X is a random variable, then for non-negative function h, and
c > 0,

PX [h(X) ≥ c] ≤ EX [h(X)]

c
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Proof (continuous case) : Suppose that X has density function fX which is positive for x ∈ X. Let
A = {x ∈ X : h(x) ≥ c} ⊆ X . Then, as h(x) ≥ c on A,

EX [h(X)] =

∫
h(x)fX(x) dx =

∫
A

h(x)fX(x) dx+

∫
A′

h(x)fX(x) dx

≥
∫
A

h(x)fX(x) dx

≥
∫
A

cfX(x) dx = c PX [X ∈ A] = c PX [h(X) ≥ c]

and the result follows.

• SPECIAL CASE I - THE MARKOV INEQUALITY
If h(x) = |x|r for r > 0, so

PX [|X|r ≥ c] ≤ EX [|X|r]
c

.

Alternately stated (by Casella and Berger) as follows: If P [Y ≥ 0] = 1 and P [Y = 0] < 1, then for
any r > 0

PY [Y ≥ r] ≤ EY [Y ]

r

with equality if and only if
PY [Y = r] = p = 1− PY [Y = 0]

for some 0 < p ≤ 1.

• SPECIAL CASE II - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation µ and variance σ2. Then h(x) = (x − µ)2

and c = k2σ2, for k > 0,
PX

[
(X − µ)2 ≥ k2σ2

]
≤ 1/k2

or equivalently
PX [|X − µ| ≥ kσ] ≤ 1/k2.

Setting ϵ = kσ gives
PX [|X − µ| ≥ ϵ] ≤ σ2/ϵ2

or equivalently
PX [|X − µ| < ϵ] ≥ 1− σ2/ϵ2.

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)
If Z ∼ N (0, 1), then for t > 0√

2

π

t

1 + t2
e−t2/2 ≤ PZ [|Z| ≥ t] ≤

√
2

π

1

t
e−t2/2

Proof By symmetry, PZ [|Z| ≥ t] = 2 PZ [Z ≥ t], so
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PZ [Z ≥ t] =

(
1

2π

)1/2 ∫ ∞

t
e−x2/2 dx ≤

(
1

2π

)1/2 ∫ ∞

t

x

t
e−x2/2 dx =

(
1

2π

)1/2 e−t2/2

t
.

Similarly, for t > 0,∫ ∞

t
e−x2/2 dx ≡

∫ ∞

t

x

x
e−x2/2 dx =

[
−1

x
e−x2/2

]∞
t

−
∫ ∞

t

1

x2
e−x2/2 dx ≥ 1

t
e−t2/2 − 1

t2

∫ ∞

t
e−x2/2 dx

after writing 1 = x/x, then integrating by parts, and then noting that, on (t,∞), x > t ⇐⇒ 1/x2 < 1/t2,
and that the integrand is non-negative. Therefore, combining terms(

1 +
1

t2

)∫ ∞

t
e−x2/2 dx ≥ 1

t
e−t2/2

and cross-multiplying by the positive term t2/(1 + t2) yields∫ ∞

t
e−x2/2 dx ≥ t

1 + t2
e−t2/2 ∴ PZ [|Z| > t] ≥

√
2

π

t

1 + t2
e−t2/2.

To see the quality of the approximation, the table below shows the values of the bounding values for t
ranging from 1 to 5. Clearly the bounds improve as t gets larger.

t 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Lower 2.420e-01 1.196e-01 4.319e-02 1.209e-02 2.659e-03 4.610e-04 6.298e-05 6.770e-06 5.718e-07
True 3.173e-01 1.336e-01 4.550e-02 1.242e-02 2.700e-03 4.653e-04 6.334e-05 6.795e-06 5.733e-07
Upper 4.839e-01 1.727e-01 5.399e-02 1.402e-02 2.955e-03 4.987e-04 6.692e-05 7.104e-06 5.947e-07
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