556: Mathematical Statistics I

SOME INEQUALITIES

JENSEN'S INEQUALITY

Jensen's Inequality gives a lower bound on expectations of convex functions. Recall that a function $g(x)$ is convex if, for $0<\lambda<1$,

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

for all x and y. Alternatively, if the derivatives are well-defined, function $g(x)$ is convex if for all x, $g^{\prime \prime}(x) \geq 0$. Finally, $g(x)$ is concave if $-g(x)$ is convex.

We may use the general definition of convexity to prove the result by using the fact that the distribution F_{X} can be viewed as a limiting function derived from a sequence of discrete cdfs. We have that $g(x)$ is convex if, for $n \geq 2$ and constants $\lambda_{i}, i=1, \ldots, n$, with $0<\lambda_{i}<1$, and $\lambda_{1}+\cdots+\lambda_{n}=1$

$$
g\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} g\left(x_{i}\right)
$$

for all vectors $\left(x_{1}, \ldots, x_{n}\right)$; this follows by induction using the original definition. We may regard this statement as stating

$$
\begin{equation*}
g\left(\mathbb{E}_{F_{n}}[X]\right) \leq \mathbb{E}_{F_{n}}[g(X)] \tag{1}
\end{equation*}
$$

where

$$
\mathbb{E}_{F_{n}}[X]=\int x \mathrm{~d} F_{n}(x) \quad \mathbb{E}_{F_{n}}[g(X)]=\int g(x) \mathrm{d} F_{n}(x)
$$

where F_{n} is the cdf of the discrete distribution on $\left\{x_{1}, \ldots, x_{n}\right\}$ with associated probability masses $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, that is,

$$
F_{n}(x)=\sum_{i=1}^{n} \lambda_{i} \mathbb{1}_{\left[x_{i}, \infty\right)}(x) .
$$

Now, for any F_{X}, we can find infinite sequences $\left\{\left(x_{i}, \lambda_{i}\right), i=1,2, \ldots\right\}$ such that for all x

$$
\lim _{n \longrightarrow \infty} F_{n}(x)=F_{X}(x)
$$

- this is stated pointwise here, but convergence functionwise also holds. Also, as g is convex, it is also continuous. Therefore we may pass limits through the integrals and note that

$$
\lim _{n \longrightarrow \infty} \mathbb{E}_{F_{n}}[X]=\mathbb{E}_{X}[X] \quad \lim _{n \longrightarrow \infty} \mathbb{E}_{F_{n}}[g(X)]=\mathbb{E}_{X}[g(X)]
$$

which yields Jensen's inequality by substitution into (1).

Theorem (JENSEN'S INEQUALITY - differentiable case)

Suppose that X is a random variable with expectation μ, and function g is convex and finite. Then

$$
\mathbb{E}_{X}[g(X)] \geq g\left(\mathbb{E}_{X}[X]\right)
$$

with equality if and only if $g(x)$ is linear, that is for every line $a+b x$ that is a tangent to g at μ

$$
P_{X}[g(X)=a+b X]=1 .
$$

Proof Let $l(x)=a+b x$ be the equation of the tangent at $x=\mu$. Then, for each $x, g(x) \geq a+b x$ as in the figure. Thus

$$
\mathbb{E}_{X}[g(X)] \geq \mathbb{E}_{X}[a+b X]=a+b \mathbb{E}_{X}[X]=l(\mu)=g(\mu)=g\left(\mathbb{E}_{X}[X]\right)
$$

as required. Also, if $g(x)$ is linear, then equality follows by properties of expectations. Suppose that

$$
\mathbb{E}_{X}[g(X)]=g\left(\mathbb{E}_{X}[X]\right)=g(\mu)
$$

but $g(x)$ is convex, but not linear. Let $l(x)=a+b x$ be the tangent to g at μ. Then by convexity

$$
g(x)-l(x)>0 \quad \therefore \quad \int(g(x)-l(x)) \mathrm{d} F_{X}(x)=\int g(x) \mathrm{d} F_{X}(x)-\int l(x) \mathrm{d} F_{X}(x)>0
$$

and hence $\mathbb{E}_{X}[g(X)]>\mathbb{E}_{X}[l(X)]$; but $l(x)$ is linear, so $\mathbb{E}_{X}[l(X)]=a+b \mathbb{E}_{X}[X]=g(\mu)$, yielding the contradiction

$$
\mathbb{E}_{X}[g(X)]>g\left(\mathbb{E}_{X}[X]\right)
$$

and the result follows.
Another way to view this result using the tangent idea is to note that for $x_{1}, x_{2} \in \mathbb{R}$, by convexity

$$
g\left(x_{2}\right) \geq g\left(x_{1}\right)+g^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right)
$$

from which we can apply the same idea and evaluate for $x_{1}=\mu$.

- If $g(x)$ is concave, then $\mathbb{E}_{X}[g(X)] \leq g\left(\mathbb{E}_{X}[X]\right)$
- $g(x)=x^{2}$ is convex, thus $\mathbb{E}_{X}\left[X^{2}\right] \geq\left\{\mathbb{E}_{X}[X]\right\}^{2}$
- $g(x)=\log x$ is concave, thus $\mathbb{E}_{X}[\log X] \leq \log \left\{\mathbb{E}_{X}[X]\right\}$

CAUCHY-SCHWARZ INEQUALITY

Theorem

For random variable X and functions $g_{1}()$ and $g_{2}()$, we have that

$$
\begin{equation*}
\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2} \leq \mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right] \tag{2}
\end{equation*}
$$

with equality if and only if either $\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right]=0$ or $\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]=0$, or

$$
P_{X}\left[g_{1}(X)=c g_{2}(X)\right]=1
$$

for some $c \neq 0$.
Proof Let $X_{1}=g_{1}(X)$ and $X_{2}=g_{2}(X)$, and let

$$
Y_{1}=a X_{1}+b X_{2} \quad Y_{2}=a X_{1}-b X_{2}
$$

and as $\mathbb{E}_{Y_{1}}\left[Y_{1}^{2}\right], \mathbb{E}_{Y_{2}}\left[Y_{2}^{2}\right] \geq 0$, we have that

$$
\begin{aligned}
& a^{2} \mathbb{E}_{X}\left[X_{1}^{2}\right]+b^{2} \mathbb{E}_{X}\left[X_{2}^{2}\right]+2 a b \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0 \\
& a^{2} \mathbb{E}_{X}\left[X_{1}^{2}\right]+b^{2} \mathbb{E}_{X}\left[X_{2}^{2}\right]-2 a b \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0
\end{aligned}
$$

Set $a^{2}=\mathbb{E}_{X}\left[X_{2}^{2}\right]$ and $b^{2}=\mathbb{E}_{X}\left[X_{1}^{2}\right]$. If either a or b is zero, the inequality clearly holds. We may thus consider $\mathbb{E}_{X}\left[X_{1}^{2}\right], \mathbb{E}_{X}\left[X_{2}^{2}\right]>0$: we have

$$
\begin{aligned}
& 2 \mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]+2\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2} \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0 \\
& 2 \mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]-2\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2} \mathbb{E}_{X}\left[X_{1} X_{2}\right] \geq 0
\end{aligned}
$$

Rearranging, we obtain that

$$
-\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2} \leq \mathbb{E}_{X}\left[X_{1} X_{2}\right] \leq\left\{\mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]\right\}^{1 / 2}
$$

that is $\left\{\mathbb{E}_{X}\left[X_{1} X_{2}\right]\right\}^{2} \leq \mathbb{E}_{X}\left[X_{1}^{2}\right] \mathbb{E}_{X}\left[X_{2}^{2}\right]$ or, in the original form

$$
\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2} \leq \mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right] .
$$

We examine the case of equality:

$$
\begin{equation*}
\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2}=\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right] \tag{3}
\end{equation*}
$$

If $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]=0$ for $j=1$ or 2 , then $g_{j}(X)$ is zero with probability one, say $P_{X}\left[g_{j}(X)=0\right]=1$. Clearly the left-hand side of (2) is non-negative, so we must have equality as the right-hand side is zero. So suppose $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]>0$ for $j=1,2$, but $g_{1}(X)=c g_{2}(X)$ with probability one for some $c \neq 0$. In this case we replace $g_{1}(X)$ in the left- and right- hand sides of (2) to conclude that

$$
\left\{\mathbb{E}_{X}\left[c g_{2}(X)^{2}\right]\right\}^{2}=\mathbb{E}_{X}\left[\left\{c g_{2}(X)\right\}^{2}\right] \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]=c^{2} \mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]
$$

and equality follows.
For the converse, assume that (3) holds. If both sides equate to zero, then we must have at least one term on the right-hand side equal to zero, so $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]=0$ for $j=1$ or 2 . If both sides equate to a positive constant then both $\mathbb{E}_{X}\left[\left\{g_{j}(X)\right\}^{2}\right]>0$. By assumption, we may write

$$
\mathbb{E}_{X}\left[\left\{g_{1}(X)\right\}^{2}\right]=\frac{\left\{\mathbb{E}_{X}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2}}{\mathbb{E}_{X}\left[\left\{g_{2}(X)\right\}^{2}\right]}
$$

say. Let $Z=g_{1}(X)-c g_{2}(X)$. For a contradiction, assume that Z is not zero with probability 1 : we have

$$
\mathbb{E}\left[Z^{2}\right]=\mathbb{E}\left[\left\{g_{1}(X)\right\}^{2}\right]+c^{2} \mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]-2 c \mathbb{E}\left[g_{1}(X) g_{2}(X)\right]
$$

which is strictly positive. However the right hand side can be written,

$$
\mathbb{E}\left[\left\{g_{1}(X)\right\}^{2}\right]+\left(c\left\{\mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]\right\}^{1 / 2}-\frac{\mathbb{E}\left[g_{1}(X) g_{2}(X)\right]}{\left\{\mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]\right\}^{1 / 2}}\right)^{2}-\left(\frac{\mathbb{E}\left[g_{1}(X) g_{2}(X)\right]}{\left\{\mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]\right\}^{1 / 2}}\right)^{2}
$$

Now if we set

$$
c=\frac{\mathbb{E}\left[g_{1}(X) g_{2}(X)\right]}{\mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]}
$$

the second term is zero, so we must then have

$$
\mathbb{E}\left[\left\{g_{1}(X)\right\}^{2}\right]-\frac{\left\{\mathbb{E}\left[g_{1}(X) g_{2}(X)\right]\right\}^{2}}{\mathbb{E}\left[\left\{g_{2}(X)\right\}^{2}\right]}>0
$$

but this contradicts assumption (3). Hence Z must be zero with probability 1 , that is

$$
g_{1}(X)=c g_{2}(X)
$$

with probability 1.

HÖLDER'S INEQUALITY

Lemma Let $a, b>0$ and $p, q>1$ satisfy

$$
\begin{equation*}
p^{-1}+q^{-1}=1 . \tag{4}
\end{equation*}
$$

Then

$$
p^{-1} a^{p}+q^{-1} b^{q} \geq a b
$$

with equality if and only if $a^{p}=b^{q}$.
Proof Fix $b>0$. Let

$$
g(a ; b)=p^{-1} a^{p}+q^{-1} b^{q}-a b .
$$

We require that $g(a ; b) \geq 0$ for all a. Differentiating wrt a for fixed b yields $g^{(1)}(a ; b)=a^{p-1}-b$, so that $g(a ; b)$ is minimized (the second derivative is strictly positive at all a) when $a^{p-1}=b$, and at this value of a, the function takes the value

$$
p^{-1} a^{p}+q^{-1}\left(a^{p-1}\right)^{q}-a\left(a^{p-1}\right)=p^{-1} a^{p}+q^{-1} a^{p}-a^{p}=0
$$

as, by equation (4), $1 / p+1 / q=1 \Longrightarrow(p-1) q=p$. As the second derivative is strictly positive at all a, the minimum is attained at the unique value of a where $a^{p-1}=b$, where, raising both sides to power q yields $a^{p}=b^{q}$.

Theorem (HÖLDER'S INEQUALITY)

Suppose that X and Y are two random variables, and $p, q>1$ satisfy (4). Then

$$
\left|\mathbb{E}_{X, Y}[X Y]\right| \leq \mathbb{E}_{X, Y}[|X Y|] \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}
$$

Proof (Absolutely continuous case: discrete case similar) For the first inequality,

$$
\mathbb{E}_{X, Y}[|X Y|]=\iint|x y| f_{X, Y}(x, y) d x d y \geq \iint x y f_{X, Y}(x, y) d x d y=\mathbb{E}_{X, Y}[X Y]
$$

and

$$
\mathbb{E}_{X, Y}[X Y]=\iint x y f_{X, Y}(x, y) d x d y \geq \iint-|x y| f_{X, Y}(x, y) d x d y=-\mathbb{E}_{X, Y}[|X Y|]
$$

so

$$
-\mathbb{E}_{X, Y}[|X Y|] \leq \mathbb{E}_{X, Y}[X Y] \leq \mathbb{E}_{X, Y}[|X Y|] \quad \therefore \quad\left|\mathbb{E}_{X, Y}[X Y]\right| \leq \mathbb{E}_{X, Y}[|X Y|] .
$$

For the second inequality, set

$$
a=\frac{|X|}{\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}} \quad b=\frac{|Y|}{\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}} .
$$

Then from the previous lemma

$$
p^{-1} \frac{|X|^{p}}{\mathbb{E}_{X}\left[|X|^{p]}\right.}+q^{-1} \frac{|Y|^{q}}{\mathbb{E}_{Y}\left[|Y|^{q}\right]} \geq \frac{|X Y|}{\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and taking expectations yields, on the left hand side,

$$
p^{-1} \frac{\mathbb{E}_{X}\left[|X|^{p}\right]}{\mathbb{E}_{X}\left[|X|^{p}\right]}+q^{-1} \frac{\mathbb{E}_{Y}\left[|Y|^{q}\right]}{\mathbb{E}_{Y}\left[|Y|^{q}\right]}=p^{-1}+q^{-1}=1
$$

and on the right hand side

$$
\frac{\mathbb{E}_{X, Y}[|X Y|]}{\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{Y}\left[|Y|^{q}\right]\right\}^{1 / q}}
$$

and the result follows.
Note: here we have equality if and only if

$$
P_{X, Y}\left[|X|^{p}=c|Y|^{q}\right]=1
$$

for some non zero constant c.

Theorem (CAUCHY-SCHWARZ INEQUALITY REVISITED)

Suppose that X and Y are two random variables.

$$
\left|\mathbb{E}_{X, Y}[X Y]\right| \leq \mathbb{E}_{X, Y}[|X Y|] \leq\left\{\mathbb{E}_{X}\left[|X|^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}_{Y}\left[|Y|^{2}\right]\right\}^{1 / 2}
$$

Proof Set $p=q=2$ in the Hölder Inequality.

Corollaries:

(a) Let μ_{X} and μ_{Y} denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz inequality

$$
\left|\mathbb{E}_{X, Y}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]\right| \leq\left\{\mathbb{E}_{X}\left[\left(X-\mu_{X}\right)^{2}\right]\right\}^{1 / 2}\left\{\mathbb{E}_{Y}\left[\left(Y-\mu_{Y}\right)^{2}\right]\right\}^{1 / 2}
$$

so that

$$
\mathbb{E}_{X, Y}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \leq \mathbb{E}_{X}\left[\left(X-\mu_{X}\right)^{2}\right] \mathbb{E}_{Y}\left[\left(Y-\mu_{Y}\right)^{2}\right]
$$

and hence, defining the left-hand side as the covariance between X and $Y, \operatorname{Cov}_{X, Y}[X, Y]$, we have

$$
\left\{\operatorname{Cov}_{X, Y}[X, Y]\right\}^{2} \leq \operatorname{Var}_{X}[X] \operatorname{Var}_{Y}[Y] .
$$

(b) Lyapunov's Inequality: Define $Y=1$ with probability one. Then, for $1<p<\infty$

$$
\mathbb{E}_{X}[|X|] \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}
$$

Let $1<r<p$. Then

$$
\mathbb{E}_{X}\left[|X|^{r}\right] \leq\left\{\mathbb{E}_{X}\left[|X|^{p r}\right]\right\}^{1 / p}
$$

and letting $s=p r>r$ yields

$$
\mathbb{E}_{X}\left[|X|^{r}\right] \leq\left\{\mathbb{E}_{X}\left[|X|^{s}\right]\right\}^{r / s}
$$

so that

$$
\left\{\mathbb{E}_{X}\left[|X|^{r}\right]\right\}^{1 / r} \leq\left\{\mathbb{E}_{X}\left[|X|^{s}\right]\right\}^{1 / s}
$$

for $1<r<s<\infty$.

Theorem (MINKOWSKI'S INEQUALITY)

Suppose that X and Y are two random variables, and $1 \leq p<\infty$. Then

$$
\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right]\right\}^{1 / p} \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{\mathbb{E}_{Y}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

Proof Write

$$
\begin{aligned}
\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right] & =\mathbb{E}_{X, Y}\left[|X+Y \| X+Y|^{p-1}\right] \\
& \leq \mathbb{E}_{X, Y}\left[|X||X+Y|^{p-1}\right]+\mathbb{E}_{X, Y}\left[|Y||X+Y|^{p-1}\right]
\end{aligned}
$$

by the triangle inequality $|x+y| \leq|x|+|y|$. Using Hölder's Inequality on the terms on the right hand side, for q selected to satisfy $1 / p+1 / q=1$,

$$
\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right] \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}+\left\{\mathbb{E}_{Y}\left[|Y|^{p}\right]\right\}^{1 / p}\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}
$$

and dividing through by $\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}$ yields

$$
\frac{\mathbb{E}_{X, Y}\left[|X+Y|^{p}\right]}{\left\{\mathbb{E}_{X, Y}\left[|X+Y|^{q(p-1)}\right]\right\}^{1 / q}} \leq\left\{\mathbb{E}_{X}\left[|X|^{p}\right]\right\}^{1 / p}+\left\{\mathbb{E}_{Y}\left[|Y|^{p}\right]\right\}^{1 / p}
$$

and the result follows as $q(p-1)=p$, and $1-1 / q=1 / p$.

Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV'S LEMMA) If X is a random variable, then for non-negative function h, and $c>0$,

$$
P_{X}[h(X) \geq c] \leq \frac{\mathbb{E}_{X}[h(X)]}{c}
$$

Proof (continuous case) : Suppose that X has density function f_{X} which is positive for $x \in \mathbb{K}$. Let $\mathcal{A}=\{x \in \mathbb{X}: h(x) \geq c\} \subseteq X$. Then, as $h(x) \geq c$ on \mathcal{A},

$$
\begin{aligned}
\mathbb{E}_{X}[h(X)]=\int h(x) f_{X}(x) d x & =\int_{\mathcal{A}} h(x) f_{X}(x) d x+\int_{\mathcal{A}^{\prime}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} h(x) f_{X}(x) d x \\
& \geq \int_{\mathcal{A}} c f_{X}(x) d x=c P_{X}[X \in \mathcal{A}]=c P_{X}[h(X) \geq c]
\end{aligned}
$$

and the result follows.

- SPECIAL CASE I - THE MARKOV INEQUALITY

If $h(x)=|x|^{r}$ for $r>0$, so

$$
P_{X}\left[|X|^{r} \geq c\right] \leq \frac{\mathbb{E}_{X}\left[|X|^{r}\right]}{c}
$$

Alternately stated (by Casella and Berger) as follows: If $P[Y \geq 0]=1$ and $P[Y=0]<1$, then for any $r>0$

$$
P_{Y}[Y \geq r] \leq \frac{\mathbb{E}_{Y}[Y]}{r}
$$

with equality if and only if

$$
P_{Y}[Y=r]=p=1-P_{Y}[Y=0]
$$

for some $0<p \leq 1$.

- SPECIAL CASE II - THE CHEBYCHEV INEQUALITY

Suppose that X is a random variable with expectation μ and variance σ^{2}. Then $h(x)=(x-\mu)^{2}$ and $c=k^{2} \sigma^{2}$, for $k>0$,

$$
P_{X}\left[(X-\mu)^{2} \geq k^{2} \sigma^{2}\right] \leq 1 / k^{2}
$$

or equivalently

$$
P_{X}[|X-\mu| \geq k \sigma] \leq 1 / k^{2} .
$$

Setting $\epsilon=k \sigma$ gives

$$
P_{X}[|X-\mu| \geq \epsilon] \leq \sigma^{2} / \epsilon^{2}
$$

or equivalently

$$
P_{X}[|X-\mu|<\epsilon] \geq 1-\sigma^{2} / \epsilon^{2} .
$$

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)
If $Z \sim \mathcal{N}(0,1)$, then for $t>0$

$$
\sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2} / 2} \leq P_{Z}[|Z| \geq t] \leq \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^{2} / 2}
$$

Proof By symmetry, $P_{Z}[|Z| \geq t]=2 P_{Z}[Z \geq t]$, so

$$
P_{Z}[Z \geq t]=\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{t}^{\infty} e^{-x^{2} / 2} d x \leq\left(\frac{1}{2 \pi}\right)^{1 / 2} \int_{t}^{\infty} \frac{x}{t} e^{-x^{2} / 2} d x=\left(\frac{1}{2 \pi}\right)^{1 / 2} \frac{e^{-t^{2} / 2}}{t}
$$

Similarly, for $t>0$,

$$
\int_{t}^{\infty} e^{-x^{2} / 2} d x \equiv \int_{t}^{\infty} \frac{x}{x} e^{-x^{2} / 2} d x=\left[-\frac{1}{x} e^{-x^{2} / 2}\right]_{t}^{\infty}-\int_{t}^{\infty} \frac{1}{x^{2}} e^{-x^{2} / 2} d x \geq \frac{1}{t} e^{-t^{2} / 2}-\frac{1}{t^{2}} \int_{t}^{\infty} e^{-x^{2} / 2} d x
$$

after writing $1=x / x$, then integrating by parts, and then noting that, on $(t, \infty), x>t \Longleftrightarrow 1 / x^{2}<1 / t^{2}$, and that the integrand is non-negative. Therefore, combining terms

$$
\left(1+\frac{1}{t^{2}}\right) \int_{t}^{\infty} e^{-x^{2} / 2} d x \geq \frac{1}{t} e^{-t^{2} / 2}
$$

and cross-multiplying by the positive term $t^{2} /\left(1+t^{2}\right)$ yields

$$
\int_{t}^{\infty} e^{-x^{2} / 2} d x \geq \frac{t}{1+t^{2}} e^{-t^{2} / 2} \quad \therefore \quad P_{Z}[|Z|>t] \geq \sqrt{\frac{2}{\pi}} \frac{t}{1+t^{2}} e^{-t^{2} / 2}
$$

To see the quality of the approximation, the table below shows the values of the bounding values for t ranging from 1 to 5 . Clearly the bounds improve as t gets larger.

t	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Lower	$2.420 \mathrm{e}-01$	$1.196 \mathrm{e}-01$	$4.319 \mathrm{e}-02$	$1.209 \mathrm{e}-02$	$2.659 \mathrm{e}-03$	$4.610 \mathrm{e}-04$	$6.298 \mathrm{e}-05$	$6.770 \mathrm{e}-06$	$5.718 \mathrm{e}-07$
True	$3.173 \mathrm{e}-01$	$1.336 \mathrm{e}-01$	$4.550 \mathrm{e}-02$	$1.242 \mathrm{e}-02$	$2.700 \mathrm{e}-03$	$4.653 \mathrm{e}-04$	$6.339 \mathrm{e}-05$	$6.795 \mathrm{e}-06$	$5.733 \mathrm{e}-07$
Upper	$4.839 \mathrm{e}-01$	$1.727 \mathrm{e}-01$	$5.399 \mathrm{e}-02$	$1.402 \mathrm{e}-02$	$2.955 \mathrm{e}-03$	$4.987 \mathrm{e}-04$	$6.692 \mathrm{e}-05$	$7.104 \mathrm{e}-06$	$5.947 \mathrm{e}-07$

