556: MATHEMATICAL STATISTICS 1
SOME INEQUALITIES

JENSEN’S INEQUALITY
Jensen’s Inequality gives a lower bound on expectations of convex functions. Recall that a function
g(x) is convex if, for 0 < A < 1,

gz + (1= Ny) < Ag(z) + (1 = N)g(y)

for all = and y. Alternatively, if the derivatives are well-defined, function g(x) is convex if for all z,
¢"(x) > 0. Finally, g(x) is concave if —g(x) is convex.

We may use the general definition of convexity to prove the result by using the fact that the distribution
Fx can be viewed as a limiting function derived from a sequence of discrete cdfs. We have that g(z) is

convex if, for n > 2 and constants \;,i = 1,...,n,withO < \; < l,and Ay +---+ X\, =1
n n
g (Z Aﬂi) <> g ()
i=1 i=1
for all vectors (z1, ..., zy,); this follows by induction using the original definition. We may regard this

statement as stating
9 (Ep,[X]) < Ep,[9(X)] (1)
where

Ep,[X] = / rdFu(z)  Eplg(X)] = / g(z) dF, (z)

where F), is the cdf of the discrete distribution on {z1,...,z,} with associated probability masses
{A1,..., \n}, thatis,

i=1
Now, for any Fx, we can find infinite sequences {(z;, \;),7 = 1,2, ...} such that for all =

li_n)loo F,(z) = Fx(z)

n

— this is stated pointwise here, but convergence functionwise also holds. Also, as g is convex, it is also
continuous. Therefore we may pass limits through the integrals and note that

lim Ep, [X] = Ex[X] lim Ep,[g(X)] = Ex[g(X)]

n—ao0 n—aoo

which yields Jensen’s inequality by substitution into (1).

Theorem (JENSEN’S INEQUALITY - differentiable case)
Suppose that X is a random variable with expectation y, and function g is convex and finite. Then

Ex [9(X)] = g(Ex [X])
with equality if and only if g(x) is linear, that is for every line a + bx that is a tangent to g at i

Px[g(X) =a+bX] = 1.



g(x)

Proof Let[(z) = a + bx be the equation of the tangent at « = p. Then, for each z, g(z) > a + bx as in
the figure. Thus

Ex[9(X)] = Exla+ bX] = a+ bEx[X] = (1) = g(n) = g(Ex[X])
as required. Also, if g() is linear, then equality follows by properties of expectations. Suppose that
Ex [9(X)] = g(Ex [X]) = g(n)

but g(z) is convex, but not linear. Let [(z) = a + bx be the tangent to g at ;.. Then by convexity

g(@)—1(x) >0 .. / (9(x) — U(x)) dFx (x) = / o(e) dFy () - / I(2) dFy () > 0

and hence Ex[g(X)] > Ex[I(X)]; but [(x) is linear, so Ex[I(X)] = a + bEx[X]| = g(u), yielding the
contradiction

Ex[g(X)] > g(Ex[X]).

and the result follows.
Another way to view this result using the tangent idea is to note that for =1, z2 € R, by convexity
9(w2) > g(x1) + g'(21)(22 — 21)
from which we can apply the same idea and evaluate for x; = p.
e If g(x) is concave, then Ex [¢(X)] < g(Ex [X])

o g(z) = 2? is convex, thus Ex [X?] > {Ex [X]}?
e g(z) =logz is concave, thus Ex [log X| < log {Ex [X]}



CAUCHY-SCHWARZ INEQUALITY

Theorem
For random variable X and functions g;() and g2(), we have that

{Ex[o1(X)g2(X)]}* < Ex[{g1(X)}*JEx [{92(X)}7] 2)
with equality if and only if either Ex[{g1(X)}*] = 0 or Ex[{g2(X)}*] =0, or
Px[g1(X) = cg2(X)] =1

for some ¢ # 0.

Proof Let X; = ¢1(X) and X3 = g2(X), and let
Y1 =aX1 +bXo Yo =aX; — bXo
and as Fy, [Y?], Ey,[Y$] > 0, we have that
a*Ex[XT] + D*Ex [X5] + 2abEx [X1X2] > 0
a’Ex[X?] + 0*Ex[X3] — 2abEx[X1X2] > 0

Set a? = Ex[X2] and bv? = Ex[X?]. If either a or b is zero, the inequality clearly holds. We may thus
consider Ex[X?], Ex[X3] > 0: we have

2 x [X7]Ex [X3] + 2{Ex [XF)Ex [X3]} P Ex [X1 X5] > 0
2Ex [XT]Ex [X3] — 2{Ex [XT)Ex [X3]}PEx [X1X,] > 0
Rearranging, we obtain that
—{Ex[XFIEX[X31}/? < Ex[X1Xs) < {Ex[XT)EX[X3]}/?
that is {Ex[X1X2]}? < Ex[X?]Ex[X3] or, in the original form

{Ex[g1(X)g2(XNF* < Ex[{g1(X)}JEx [{g2(X)}7].
We examine the case of equality:

{Ex[g1(X)g2(X)]}? = Ex[{g1(X)}Ex[{g2(X)}?] 3)

If Ex[{g;(X)}?] = 0 for j = 1 or 2, then g;(X) is zero with probability one, say Px[g;(X) = 0] = 1.
Clearly the left-hand side of (2) is non-negative, so we must have equality as the right-hand side is
zero. So suppose Ex[{g;(X)}?] > 0 for j = 1,2, but g1(X) = cg2(X) with probability one for some
¢ # 0. In this case we replace g1 (X) in the left- and right- hand sides of (2) to conclude that

{Ex[eg2(X))* = Ex[{eg2(X)}IEx[{92(X)}?] = PEx[{g2(X)}7]

and equality follows.

For the converse, assume that (3) holds. If both sides equate to zero, then we must have at least one
term on the right-hand side equal to zero, so Ex [{g;(X)}?] = 0 for j = 1 or 2. If both sides equate to a
positive constant then both Ex[{g;(X)}?] > 0. By assumption, we may write

_ {Exlan (X)ga(X)])?

Elln 0N = T Teop




say. Let Z = g1 (X) —cg2(X). For a contradiction, assume that Z is not zero with probability 1: we have
E[Z%] = E[{g1(X)}*] + E[{g2(X)}?] — 2cE[g1(X)ga(X)]
which is strictly positive. However the right hand side can be written,

Elg1(X)g2(X)] >_< Elg1 (X)g2(X)] )
{E{g2(X) 13/ {E[{g2(X)}2}1/2

El{sn (X)) + (e{EHoCOPIH -

Now if we set
E[g1(X)g2(X)]

E{g2(X)}?]

CcC =

the second term is zero, so we must then have

{E[g1(X)ga(X)]}?
E[{g2(X)}?]

but this contradicts assumption (3). Hence Z must be zero with probability 1, that is

El{g1(X)}?] - >0

g1(X) = cga(X)
with probability 1.
HOLDER’S INEQUALITY
Lemma Leta,b> 0and p,q > 1 satisfy
p g =1 (4)

Then
plal +q b > ab

with equality if and only if a? = b9.

Proof Fixb > 0. Let
gla;b) =p~taP + ¢ 1 b7 — ab.

We require that g(a; b) > 0 for all a. Differentiating wrt a for fixed b yields ¢! (a;b) = a?~* — b, so that
g(a;b) is minimized (the second derivative is strictly positive at all a) when a?~! = b, and at this value
of a, the function takes the value

pltal+q (@ —a(a® ) =ptal+ g a —af =0

as, by equation (4), 1/p+1/q¢ =1 = (p — 1)q = p. As the second derivative is strictly positive at all a,
the minimum is attained at the unique value of a where a?~! = b, where, raising both sides to power
q yields a? = b1.

Theorem (HOLDER’S INEQUALITY)
Suppose that X and Y are two random variables, and p, ¢ > 1 satisfy (4). Then

Exy[XY]| < Exy[IXY]] < {Ex[IXP]}? {Ey [[Y |}

Proof (Absolutely continuous case: discrete case similar) For the first inequality,

Exy[|XY] = / / eyl fxy (@,y) de dy > / / ryfxy (,y) dz dy = Ex.y[XY]

4



and
Exy[XY] = / / 2y fxy (oy) do dy > / / eyl fxy (a,y) de dy = —Exy [|XY]]

SO
—Exy[|XY|] <Exy[XY] < Exy[XY]] Exy[XY]| < Exy[XY]].

For the second inequality, set
_ X ,_ IV
“= 1/p N 1/q’
{Ex[IX[P1} {Ev[IY]e]}
Then from the previous lemma

X e XY
Ex[|X|?] Ev(IY]9] ~ {Ex[|X[P]}/P {Ey[Y |7}

and taking expectations yields, on the left hand side,

—1 Ex([|X]7] ! Ev (Y]]
Ex[|X[7] Ey[lY]9]

=p g =1

and on the right hand side
Exy[XY]]

{Ex[IX [P} P{Ey (Y1}

and the result follows.

Note: here we have equality if and only if
Pxy[|[X[P=clY|]=1

for some non zero constant c.

Theorem (CAUCHY-SCHWARZ INEQUALITY REVISITED)
Suppose that X and Y are two random variables.

Exy[XY]| < Exy[IXY]]) < {Ex[|X]}? {Ev [V}

Proof Setp = ¢ = 2 in the Holder Inequality.

Corollaries:

(a) Let uy and py denote the expectations of X and Y respectively. Then, by the Cauchy-Schwarz
inequality

Exy[(X = ux)(Y — )]l < {Ex[(X — px)? ]} P {Ev (Y — uy)2]} 2

so that
Ex,y[(X — pux)(Y — py)] € Ex[(X — pux)’|Ey[(Y — py)?]
and hence, defining the left-hand side as the covariance between X and Y, Covx y[X,Y], we

have
{Covxy[X,V]}? < Varyx[X] Vary[Y].



(b) Lyapunov’s Inequality: Define Y = 1 with probability one. Then, for 1 < p < oo
Ex[|X] < {Ex[XF}H".

Let1 < r < p. Then
Ex[|X|] < {Ex[| X[}

and letting s = pr > r yields
Ex[1X7] < {Ex[IXIT)"

so that
{Ex[IX["}" < {Ex[| X[}/

forl <r < s < oo.

Theorem (MINKOWSKI’'S INEQUALITY)
Suppose that X and Y are two random variables, and 1 < p < co. Then

{Exy[X + YPPIIVP < {Ex[IXIP]}'P + {Ey [[Y P]}V/?

Proof Write

Exy[|X+Y[] = Exy[|X+Y||X+Y]P

IN

Exy[X[IX + YT+ Exy[[Y|IX + Y[~

by the triangle inequality |z + y| < |z| + |y|. Using Holder’s Inequality on the terms on the right hand
side, for g selected to satisfy 1/p+1/¢ =1,

1/q 1/q
Exy X + Y1) < {ExX 7 {Excy[1X + Y10 D]+ {Ex (Y P} {Exy[IX + ]2 ]}

and dividing through by {Ex y[|X + Y [1(P~Y)] }1/q yields

Exy[|X + Y]
{Exy[|X 4+ Y]ar-1]}

e < AEx[IXPIYY? + {Ev [[Y P
and the result follows as ¢(p — 1) =p,and 1 —1/q¢ = 1/p.

Concentration and Tail Probability Inequalities

Lemma (CHEBYCHEV’S LEMMA) If X is a random variable, then for non-negative function h, and
c>0,



Proof (continuous case) : Suppose that X has density function fx which is positive for x € X. Let
A={zeX:h(zx)>c} CX.Then,as h(z) > con A,

Ex [h(X)] = / W) fx(x) de = / W) fx () di + / W) fx () do

A A’

[ hxte) do

A

AV

> /cfx(m) dz = c Py [X € A] = ¢ Py [h(X) > d
A

and the result follows.

e SPECIAL CASEI-THE MARKOV INEQUALITY
If h(z) = |z|" for r > 0, so
Px[|X]">d < w
C
Alternately stated (by Casella and Berger) as follows: If P[Y" > 0] = 1 and P[Y = 0] < 1, then for
any r >0
Ey [Y]

Py[Y 2 7"] §
r

with equality if and only if
Py[Y:T]ZPZI—Py[YZO]

for some 0 < p < 1.

e SPECIAL CASE Il - THE CHEBYCHEV INEQUALITY
Suppose that X is a random variable with expectation p and variance o2. Then h(x) = (z — p)
and ¢ = k202, for k > 0,

2

Py [(X —u)?> kzaﬂ < 1/k2

or equivalentl
! g Px [|X — p| > ko] < 1/K2.

Setting € = ko gives
Px[|X —pu| > ¢ < o?/é

or equivalently
Px[|X —p| <€ >1—0%/

Theorem (TAIL BOUNDS FOR THE NORMAL DENSITY)
If Z~N(0,1), then fort >0

2 t —t2/2 \/51 —t2/2
2 < Py|Z] > 1] <] 2-
\/;1+t2€ < PzllZl =8 <y Tge

Proof By symmetry, P;[|Z| > t| =2 Pz[Z > t], so




1\Y2 o, L\Y2 o 1\ Y2 1?2
Pzt = (= 22 gy < (L / Lot gy — (L .
212 2 1] (277) /t ¢ dx_<27r> ¢ t© d 2m t

Similarly, for ¢ > 0,

o
/Ooe—xQ/Q dl’E /Ooxe—x2/2 dx: |:_]‘e—a;2/2:| _/Oo]ée—xQ/Q d.f[f Z 1€_t2/2 _12/00 e—x2/2 d.’L‘
¢ P T ‘ PR t t“ Jy

after writing 1 = z/z, then integrating by parts, and then noting that, on (t,0), z > t <= 1/2? < 1/#?,
and that the integrand is non-negative. Therefore, combining terms

1 o0 _2/2 1 —t2/2
14 = e v /edr> e
), t

and cross-multiplying by the positive term t2/(1 + 2) yields

/Oo 2y > L) A= \F —
e T —F5 € - .
\ 1+ Z “Vr1+e2

To see the quality of the approximation, the table below shows the values of the bounding values for ¢
ranging from 1 to 5. Clearly the bounds improve as ¢ gets larger.

t 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Lower | 2.420e-01 1.196e-01 4.319e-02 1.209e-02 2.659e-03 4.610e-04 6.298e-05 6.770e-06 5.718e-07
True 3.173e-01 1.336e-01 4.550e-02 1.242e-02 2.700e-03 4.653e-04 6.334e-05 6.795e-06 5.733e-07
Upper | 4.839e-01 1.727e-01 5.399e-02 1.402e-02 2.955e-03 4.987e-04 6.692e-05 7.104e-06 5.947e-07




