MATH 556: RANDOM VARIABLES \& PROBABILITY DISTRIBUTIONS

1.8 RANDOM VARIABLES \& PROBABILITY MODELS

A random variable (r.v.) X is a function defined on a space (Ω, \mathcal{F}) that associates a real number $X(\omega)=$ x with each "event" $A \in \mathcal{F}$.

Formally, we regard X as a (possibly many-to-one) mapping from Ω to \mathbb{R}

$$
\begin{aligned}
X: \mathcal{F} & \longrightarrow \mathbb{R} \\
& A \longmapsto x
\end{aligned}
$$

We note the equivalence of events in \mathcal{F} and their images under X. Consider the space $(\mathbb{R}, \mathcal{B})$, that is the real line \mathbb{R}, and the sigma-algebra \mathcal{B} of sets generated by all open, half-open or closed subsets of the reals, that is, sets of the form

$$
(a, b) \quad(a, b] \quad[a, b) \quad[a, b]
$$

and countable unions and intersections of these sets. Consider $B \in \mathcal{B}$, and consider the pre-image

$$
B^{-1}=\{\omega \in \Omega: X(\omega) \in B\}
$$

For X to be a valid random variable, we require that $B^{-1} \in \mathcal{F}$. Strictly, when referring to random variables, we should make explicit the connection to original sample space Ω and write $X(\omega)$ for individual sample outcomes, and

$$
P_{X}[X \in B]=P_{X}(\{\omega: X(\omega) \in B\})
$$

for events. However, generally, we will suppress this and merely refer to X.
In deducing the probability measure for X, P_{X}, we must have

$$
P\left(B^{-1}\right)=P_{X}[X \in B]=P_{X}(B) .
$$

for all $B \in \mathcal{B}$, where B^{-1} is the pre-image of B.

Probability Functions

Consider the real function of a real argument, F_{X}, defined by

$$
F_{X}(x)=P_{X}((-\infty, x])=\int_{(-\infty, x]} P_{X}(d x)
$$

for real values of x. Note that $X \in(-\infty, x]$ is equivalent to $X \leq x$, and, by definition,

$$
F_{X}(x)=\int_{-\infty}^{x} d F_{X}(t)
$$

F_{X} defines the probability distribution of X. The nature of F_{X} determines how we can manipulate this function. There are three cases to consider:

1. F_{X} is a step-function, that is, F_{X} changes only at a certain (countable) set of x values.
2. F_{X} is a continuous function.
3. F_{X} is a mixture of 1 . and 2 .

1.8.1 DISCRETE RANDOM VARIABLES

Definition A random variable X is discrete if F_{X} is a step-function.
If X is discrete then the set of all values at which F_{X} changes, to be denoted \mathbb{X}, is countable, that is

- $\mathbb{X} \equiv\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad$ (that is, a finite list)
- $\mathbb{X} \equiv\left\{x_{1}, x_{2}, \ldots\right\} \quad$ (that is, a countably infinite list).

If X is discrete, then it follows the event $X \in B$ can be decomposed

$$
X \in B \quad \Longleftrightarrow \quad X \in\left\{x_{i}: x_{i} \in B\right\}
$$

so that F_{X} can be represented as a sum of probabilities

$$
F_{X}(x)=\sum_{x_{i} \leq x} P_{X}\left(X \in\left\{x_{i}\right\}\right)=\sum_{x_{i} \leq x} P_{X}\left[X=x_{i}\right] .
$$

Definition PROBABILITY MASS FUNCTION

The function f_{X}, defined on \mathbb{X} by

$$
f_{X}(x)=P_{X}[X=x] \quad x \in \mathbb{X}
$$

that assigns probability to each $x \in \mathbb{X}$ is the (discrete) probability mass function, or pmf.
NOTE: For completeness, we define

$$
f_{X}(x)=0 \quad x \notin \mathbb{X}
$$

so that f_{X} is defined for all $x \in \mathbb{R}$. Thus \mathbb{X} is the support of random variable X, that is, the set of $x \in \mathbb{R}$ such that $f_{X}(x)>0$

PROPERTIES OF MASS FUNCTION f_{X}

Elementary properties of the mass function are straightforward to establish using the probability axioms.

A function f_{X} is a probability mass function for discrete random variable X with support \mathbb{X} of the form $\left\{x_{1}, x_{2}, \ldots\right\}$ if and only if
(i) $f_{X}\left(x_{i}\right) \geq 0$
(ii) $\sum_{i} f_{X}\left(x_{i}\right)=1$

Clearly as $f_{X}(x)=P_{X}[X=x]$, we must have, for all $x \in \mathbb{R}$,

$$
0 \leq f_{X}(x) \leq 1
$$

Definition DISCRETE CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function, or cdf, F_{X} of a discrete r.v. X is defined by

$$
F_{X}(x)=P_{X}[X \leq x] \quad x \in \mathbb{R} .
$$

Connection between F_{X} and f_{X} : Let X be a discrete random variable with support $\mathbb{X} \equiv\left\{x_{1}, x_{2}, \ldots\right\}$, where $x_{1}<x_{2}<\ldots$, and pmf f_{X} and cdf F_{X}. For any real value x, if $x<x_{1}$, then $F_{X}(x)=0$, and for $x \geq x_{1}$,

$$
F_{X}(x)=\sum_{x_{i} \leq x} f_{X}\left(x_{i}\right)
$$

so that, for $i=2,3, \ldots$,

$$
f_{X}\left(x_{i}\right)=F_{X}\left(x_{i}\right)-F_{X}\left(x_{i-1}\right)
$$

with, for completeness, $f_{X}\left(x_{1}\right)=F_{X}\left(x_{1}\right)$.

1.8.2 PROPERTIES OF DISCRETE CDF F_{X}

(i) In the limiting cases,

$$
\lim _{x \rightarrow-\infty} F_{X}(x)=0 \quad \lim _{x \rightarrow \infty} F_{X}(x)=1
$$

(ii) F_{X} is continuous from the right (but not continuous) on \mathbb{R} that is, for $x \in \mathbb{R}$,

$$
\lim _{h \rightarrow 0^{+}} F_{X}(x+h)=F_{X}(x)
$$

but, if $x \in \mathbb{X}$,

$$
\lim _{h \rightarrow 0^{-}} F_{X}(x+h) \neq F_{X}(x)
$$

that is, the "left limit" is not equal to the "right limit" at x values in \mathbb{X}.
(iii) F_{X} is non-decreasing, that is

$$
a<b \Longrightarrow F_{X}(a) \leq F_{X}(b)
$$

(iv) For $a<b$,

$$
P[a<X \leq b]=F_{X}(b)-F_{X}(a)
$$

Notes:

- The functions f_{X} and/or F_{X} can both be used to describe the probability distribution of random variable X.
- The function f_{X} is non-zero only at the elements of \mathbb{X}.
- The function F_{X} is a step-function, which takes the value zero at minus infinity, the value one at infinity, and is non-decreasing with points of discontinuity at the elements of \mathbb{X}.
- The right-continuity of F_{X} is denoted in plots by the use of a filled circle, \bullet, as in the example below.
- In the discrete case, F_{X} is not differentiable for all $x \in \mathbb{R}$; at points of continuity (that is, for $x \notin \mathbb{X}$), it is differentiable, and the derivative is zero.

Example Consider a coin tossing experiment where a fair coin is tossed repeatedly under identical experimental conditions, with the sequence of tosses independent, until a Head is obtained. For this experiment, the sample space, Ω is then the set of sequences

$$
(\{H\},\{T H\},\{T T H\},\{T T T H\} \ldots)
$$

with associated probabilities $1 / 2,1 / 4,1 / 8,1 / 16, \ldots$.
Define discrete random variable X by $X(\omega)=x \Longleftrightarrow$ first H on toss x. Then

$$
f_{X}(x)=P_{X}[X=x]=\left(\frac{1}{2}\right)^{x} \quad x=1,2,3, \ldots
$$

and zero otherwise. For $x \geq 1$, let $\lfloor x\rfloor$ be the largest integer not greater than x. Then

$$
F_{X}(x)=\sum_{x_{i} \leq x} f_{X}\left(x_{i}\right)=\sum_{i=1}^{\lfloor x\rfloor} f_{X}(i)=1-\left(\frac{1}{2}\right)^{\lfloor x\rfloor}
$$

and $F_{X}(x)=0$ for $x<1$.
Graphs of the probability mass function (top) and cumulative distribution function (bottom) are shown in Figure 3. Note that the mass function is only non-zero at points that are elements of X, and that the cdf is defined for all real values of x, but is only continuous from the right. F_{X} is therefore a stepfunction.

Figure 3: PMF $f_{X}(x)=\left(\frac{1}{2}\right)^{x}, x=1,2,3, \ldots$ and $\operatorname{CDF} F_{X}(x)=1-\left(\frac{1}{2}\right)^{\lfloor x\rfloor}$

1.8.3 CONTINUOUS RANDOM VARIABLES

Definition A random variable X is continuous if the function F_{X} defined on \mathbb{R} by

$$
F_{X}(x)=P[X \leq x]
$$

for $x \in \mathbb{R}$ is a continuous function on \mathbb{R}, that is, for $x \in \mathbb{R}$,

$$
\lim _{h \rightarrow 0} F_{X}(x+h)=F_{X}(x) .
$$

Definition CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function, or cdf, F_{X} of a continuous r.v. X is defined by

$$
F_{X}(x)=P[X \leq x] \quad x \in \mathbb{R} .
$$

Definition PROBABILITY DENSITY FUNCTION

A random variable is absolutely continuous if the cumulative distribution function F_{X} can be written

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

for some function f_{X}, termed the probability density function, or $\mathbf{p d f}$, of X. For any suitable set B,

$$
P_{X}[X \in B]=\int_{B} f_{X}(x) d x
$$

Directly from the definition, at values of x where F_{X} is differentiable x,

$$
f_{X}(x)=\frac{d}{d t}\left\{F_{X}(t)\right\}_{t=x}
$$

PROPERTIES OF CONTINUOUS F_{X} AND f_{X}

(i) The pdf f_{X} need not exist, but continuous r.v.s where f_{X} cannot be defined in this way will be ignored. The function f_{X} can be defined piecewise on intervals of \mathbb{R}.
(ii) For the cdf of a continuous r.v.,

$$
\lim _{x \rightarrow-\infty} F_{X}(x)=0 \quad \lim _{x \rightarrow \infty} F_{X}(x)=1
$$

(iii) If X is continuous,

$$
f_{X}(x) \neq P_{X}[X=x]=\lim _{h \rightarrow 0}\left[F_{X}(x+h)-F_{X}(x)\right]=0
$$

(iv) For $a<b$,

$$
P_{X}[a<X \leq b]=P_{X}[a \leq X<b]=P_{X}[a \leq X \leq b]=P_{X}[a<X<b]=F_{X}(b)-F_{X}(a)
$$

It follows that a function f_{X} is a pdf for a continuous random variable X if and only if

$$
\begin{array}{ll}
\text { (i) } f_{X}(x) \geq 0 & \text { (ii) } \int_{-\infty}^{\infty} f_{X}(x) d x=1
\end{array}
$$

This result follows direct from definitions and properties of F_{X}. Note that in the continuous case, there is no requirement that f_{X} is bounded above.

Example Consider an experiment to measure the length of time that an electrical component functions before failure. The sample space of outcomes of the experiment, Ω is ${ }^{+}$, and if A_{x} is the event that the component functions for longer than $x>0$ time units, suppose that

$$
P\left(A_{x}\right)=\exp \left\{-x^{2}\right\} .
$$

Define continuous random variable X by $X(\omega)=x \Longleftrightarrow$ component fails at time x. Then, if $x>0$,

$$
F_{X}(x)=P_{X}[X \leq x]=1-P_{X}\left(A_{x}\right)=1-\exp \left\{-x^{2}\right\}
$$

and $F_{X}(x)=0$ if $x \leq 0$. Hence if $x>0$,

$$
f_{X}(x)=\frac{d}{d t}\left\{F_{X}(t)\right\}_{t=x}=2 x \exp \left\{-x^{2}\right\}
$$

and zero otherwise.
Graphs of the probability density function (top) and cumulative distribution function (bottom) are shown in Figure 4. Note that both the pdf and cdf are defined for all real values of x, and that both are continuous functions.

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t=\int_{0}^{x} f_{X}(t) d t
$$

as $f_{X}(x)=0$ for $x \leq 0$, and also that

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{\infty} f_{X}(x) d x=1
$$

Figure 4: PDF $f_{X}(x)=2 x{ }^{\times} \exp \left\{-x^{2}\right\}, x>0$, and $\operatorname{CDF} \stackrel{\star}{F}_{X}(x)=1-\exp \left\{-x^{2}\right\}, x>0$

