MATH 556: PROBABILITY PRIMER

1 DEFINITIONS, TERMINOLOGY, NOTATION

1.1 EVENTS AND THE SAMPLE SPACE

- An **experiment** is a one-off or repeatable process or procedure for which
 - (a) there is a well-defined set of (possible) outcomes
 - (b) the actual outcome is not known with certainty.
- A **sample outcome**, ω , is precisely one of the (possible) outcomes of an experiment.
- The **sample space**, Ω , of an experiment is the set of all (possible) outcomes.

 Ω is a set in the mathematical sense, so set theory notation can be used. For example, if the sample outcomes are denoted $\omega_1, \omega_2 \dots$, say, then the sample space of an experiment can be

- a FINITE list of sample outcomes, $\{\omega_1, \ldots, \omega_k\}$
- an INFINITE list of sample outcomes, $\{\omega_1, \omega_2, \ldots\}$
- an INTERVAL or REGION of a real space, $\{\omega : \omega \in A \subseteq \mathbb{R}^d\}$

An **event**, E, is a designated collection of sample outcomes. Event E **occurs** if the actual outcome of the experiment is one of this collection; for any event E, $E \subseteq \Omega$. Particular events are:

- the collection of all sample outcomes, Ω ,
- the collection of *none* of the sample outcomes, \emptyset (the **empty set**).

1.1.1 OPERATIONS IN SET THEORY

Set theory operations can be used to manipulate events in probability theory. Consider events $E, F \subseteq \Omega$. Then the three basic operations are

UNION	$E \cup F$	" E or F or both occur"
INTERSECTION	$E \cap F$	"both E and F occur"
COMPLEMENT	E'	" E does not occur"

Consider events $E, F, G \subseteq \Omega$.

COMMUTATIVITY
$$E \cup F = F \cup E$$

$$E \cap F = F \cap E$$
 ASSOCIATIVITY
$$E \cup (F \cup G) = (E \cup F) \cup G$$

$$E \cap (F \cap G) = (E \cap F) \cap G$$
 DISTRIBUTIVITY
$$E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$$

$$E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$$
 DE MORGAN'S LAWS
$$(E \cup F)' = E' \cap F'$$

$$(E \cap F)' = E' \cup F'$$

Union and intersection are *binary* operators, that is, they take only two arguments, and thus the bracketing in the above equations is necessary. For $k \ge 2$ events, E_1, E_2, \dots, E_k ,

$$\bigcup_{i=1}^k E_i = E_1 \cup \ldots \cup E_k \qquad \text{and} \qquad \bigcap_{i=1}^k E_i = E_1 \cap \ldots \cap E_k$$

for the union and intersection of E_1, E_2, \dots, E_k , with a further extension for k infinite.

1.1.2 MUTUALLY EXCLUSIVE EVENTS AND PARTITIONS

Events E and F are **mutually exclusive** if $E \cap F = \emptyset$, that is, if events E and F cannot both occur. If the sets of sample outcomes represented by E and F are **disjoint** (have no common element), then E and F are mutually exclusive.

Events $E_1, \ldots, E_k \subseteq \Omega$ form a **partition** of event $F \subseteq \Omega$ if

(a) $E_i \cap E_j = \emptyset$ for $i \neq j$, $i, j = 1, \dots, k$

(b)
$$\bigcup_{i=1}^{k} E_i = F$$

so that each element of the collection of sample outcomes corresponding to event F is in *one and only one* of the collections corresponding to events E_1, \ldots, E_k .

1.1.3 SIGMA-ALGEBRAS

A (countable) collection of subsets, \mathscr{E} , of sample space Ω , say $\mathscr{E} = \{E_1, E_2, \ldots\}$, is a *sigma-algebra* if

I $\Omega \in \mathscr{E}$

II $E \in \mathscr{E} \Longrightarrow E' \in \mathscr{E}$

III If $E_1, E_2, \ldots \in \mathscr{E}$, then

$$\bigcup_{i=1}^{\infty} E_i \in \mathscr{E}.$$

If \mathscr{E} is an algebra of subsets of Ω , then

- (i) $\emptyset \in \mathscr{E}$
- (ii) If $E_1, E_2 \in \mathcal{E}$, then

$$E_1', E_2' \in \mathscr{E} \implies E_1' \cup E_2' \in \mathscr{E} \implies (E_1' \cup E_2')' \in \mathscr{E} \implies E_1 \cap E_2 \in \mathscr{E}$$

so \mathcal{E} is also closed under intersection.

1.2 THE PROBABILITY FUNCTION

For an event $E \subseteq \Omega$, the **probability that** E **occurs** is written P(E).

Interpretation : P(.) is a *set-function* that assigns "weight" to collections of possible outcomes of an experiment. There are many ways to think about precisely how this assignment is achieved;

CLASSICAL: "Consider equally likely sample outcomes ..."

FREQUENTIST: "Consider long-run relative frequencies ..."

SUBJECTIVE: "Consider personal degree of belief ..."

or merely think of P(.) as a set-function.

1.3 PROPERTIES OF P(.): THE AXIOMS OF PROBABILITY

Consider sample space Ω . Then probability function P(.) acts on a sigma-algebra $\mathscr E$ defined on Ω

$$P:\mathscr{E}\longrightarrow\mathbb{R}$$

and satisfies the following properties:

- (I) Let $E \in \mathscr{E}$. Then $0 \le P(E) \le 1$.
- (II) $P(\Omega) = 1$.
- (III) If E_1, E_2, \ldots are mutually exclusive events, then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

1.3.1 COROLLARIES TO THE PROBABILITY AXIOMS

For events $E, F \subseteq \Omega$

- 1 P(E') = 1 P(E), and hence $P(\emptyset) = 0$.
- 2 If $E \subseteq F$, then $P(E) \leq P(F)$.
- 3 In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$.
- $4 P(E \cap F') = P(E) P(E \cap F).$
- 5 $P(E \cup F) \le P(E) + P(F)$.
- 6 $P(E \cap F) \ge P(E) + P(F) 1$.

The **general addition rule** for probabilities and Boole's Inequality extend to more than two events. Let E_1, \ldots, E_n be events in Ω . Then

(i)
$$P\left(\bigcup_{i=1}^n E_i\right) \leq \sum_{i=1}^n P(E_i).$$

(i)
$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i} P(E_{i}) - \sum_{i < j} P(E_{i} \cap E_{j}) + \sum_{i < j < k} P(E_{i} \cap E_{j} \cap E_{k}) - \ldots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} E_{i}\right)$$

(i) follows from 5; for (ii), construct the events $F_1 = E_1$ and

$$F_i = E_i \cap \left(\bigcup_{k=1}^{i-1} E_k\right)'$$

for $i=2,3,\ldots,n$. Then F_1,F_2,\ldots,F_n are disjoint, and $\bigcup_{i=1}^n E_i=\bigcup_{i=1}^n F_i$, so

$$P\left(\bigcup_{i=1}^{n} E_i\right) = P\left(\bigcup_{i=1}^{n} F_i\right) = \sum_{i=1}^{n} P(F_i).$$

Now, by the corollary above, for i = 2, 3, ..., n

$$P(F_i) = P(E_i) - P\left(E_i \cap \left(\bigcup_{k=1}^{i-1} E_k\right)\right) = P(E_i) - P\left(\bigcup_{k=1}^{i-1} (E_i \cap E_k)\right)$$

and the result follows by recursive expansion of the second term for $i = 2, 3, \dots, n$.

1.4 CONDITIONAL PROBABILITY

For events $E, F \subseteq \Omega$ the **conditional probability** that F occurs **given** that E occurs is written P(F|E), and is defined by

$$P(F|E) = \frac{P(E \cap F)}{P(E)}$$

if P(E) > 0.

NOTE: $P(E \cap F) = P(E)P(F|E)$, and in general, for events E_1, \dots, E_k ,

$$P\left(\bigcap_{i=1}^{k} E_{i}\right) = P(E_{1})P(E_{2}|E_{1})P(E_{3}|E_{1} \cap E_{2}) \dots P(E_{k}|E_{1} \cap E_{2} \cap \dots \cap E_{k-1}).$$

This result is known as the CHAIN or MULTIPLICATION RULE.

Events *E* and *F* are **independent** if

$$P(E|F) = P(E)$$
 so that $P(E \cap F) = P(E)P(F)$

Extension : Events E_1, \ldots, E_k are independent if, for **every** subset of events of size $l \leq k$, indexed by $\{i_1, \ldots, i_l\}$, say,

$$P\left(\bigcap_{j=1}^{l} E_{i_j}\right) = \prod_{j=1}^{l} P(E_{i_j}).$$

1.5 THE THEOREM OF TOTAL PROBABILITY

THEOREM

Let E_1, \ldots, E_k be a partition of Ω , and let $F \subseteq \Omega$. Then

$$P(F) = \sum_{i=1}^{k} P(F|E_i)P(E_i)$$

PROOF

 E_1, \ldots, E_k form a partition of Ω , and $F \subseteq \Omega$, so

$$F = (F \cap E_1) \cup \ldots \cup (F \cap E_k)$$

$$\implies$$
 P(F) $=\sum_{i=1}^{k} P(F \cap E_i) = \sum_{i=1}^{k} P(F|E_i)P(E_i)$

3, as $E_i \cap E_j = \emptyset$).

Extension: If we assume that Axiom 3 holds, that is, that P is countably additive, then the theorem still holds, that is, if E_1, E_2, \ldots are a partition of Ω , and $F \subseteq \Omega$, then

$$P(F) = \sum_{i=1}^{\infty} P(F \cap E_i) = \sum_{i=1}^{\infty} P(F|E_i)P(E_i)$$

if $P(E_i) > 0$ for all i.

1.6 BAYES THEOREM

THEOREM

Suppose $E, F \subseteq \Omega$, with P(E), P(F) > 0. Then

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

PROOF

$$P(E|F)P(F) = P(E \cap F) = P(F|E)P(E)$$
, so $P(E|F)P(F) = P(F|E)P(E)$.

Extension: If E_1, \ldots, E_k are disjoint, with $P(E_i) > 0$ for $i = 1, \ldots, k$, and form a partition of $F \subseteq \Omega$, then

$$P(E_i|F) = \frac{P(F|E_i)P(E_i)}{\sum_{i=1}^{k} P(F|E_i)P(E_i)}$$

The extension to the countably additive (infinite) case also holds.

NOTE: in general, $P(E|F) \neq P(F|E)$

1.7 COUNTING TECHNIQUES

Suppose that an experiment has N equally likely sample outcomes. If event E corresponds to a collection of sample outcomes of size n(E), then

$$P(E) = \frac{n(E)}{N}$$

so it is necessary to be able to evaluate n(E) and N in practice.

1.7.1 THE MULTIPLICATION PRINCIPLE

If operations labelled $1, \ldots, r$ can be carried out in n_1, \ldots, n_r ways respectively, then there are

$$\prod_{i=1}^r n_i = n_1 \times \ldots \times n_r$$

ways of carrying out the r operations in total.

Example 1.1 If each of r trials of an experiment has N possible outcomes, then there are N^r possible sequences of outcomes in total. For example:

- (i) If a multiple choice exam has 20 questions, each of which has 5 possible answers, then there are 5^{20} different ways of completing the exam.
- (ii) There are 2^m subsets of m elements (as each element is either **in** the subset, or **not in** the subset, which is equivalent to m trials each with two outcomes).

1.7.2 SAMPLING FROM A FINITE POPULATION

Consider a collection of N items, and a sequence of operations labelled $1, \ldots, r$ such that the ith operation involves **selecting** one of the items remaining after the first i-1 operations have been carried out. Let n_i denote the number of ways of carrying out the ith operation, for $i=1,\ldots,r$. Then

- (a) **Sampling with replacement :** an item is returned to the collection after selection. Then $n_i = N$ for all i, and there are N^r ways of carrying out the r operations.
- (b) **Sampling without replacement :** an item is not returned to the collection after selected. Then $n_i = N i + 1$, and there are $N(N-1) \dots (N-r+1)$ ways of carrying out the r operations.

e.g. Consider selecting 5 cards from 52. Then

- (a) leads to 52^5 possible selections, whereas
- (b) leads to $52 \times 51 \times 50 \times 49 \times 48$ possible selections

NOTE : The **order** in which the operations are carried out may be important e.g. in a raffle with three prizes and 100 tickets, the draw $\{45, 19, 76\}$ is different from $\{19, 76, 45\}$.

NOTE: The items may be **distinct** (unique in the collection), or **indistinct** (of a unique type in the collection, but not unique individually). For example, the numbered balls in a lottery, or individual playing cards, are **distinct**. However balls in the lottery are regarded as "WINNING" or "NOT WINNING", or playing cards are regarded in terms of their suit only, are **indistinct**.

1.7.3 PERMUTATIONS AND COMBINATIONS

- A **permutation** is an *ordered* arrangement of a set of items.
- A **combination** is an *unordered* arrangement of a set of items.

RESULT 1 The number of permutations of n distinct items is $n! = n(n-1) \dots 1$.

RESULT 2 The number of permutations of r from n distinct items is

$$P_r^n = \frac{n!}{(n-r)!} = n(n-1) \times \ldots \times (n-r+1)$$
 (by the Multiplication Principle).

If the **order** in which items are selected is not important, then

RESULT 3 The number of combinations of r from n distinct items is

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$
 (as $P_r^n = r!C_r^n$).

-recall the **Binomial Theorem**, namely

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}.$$

Then the number of subsets of m items can be calculated as follows; for each $0 \le j \le m$, choose a subset of j items from m. Then

Total number of subsets
$$=\sum_{j=0}^{m} {m \choose j} = (1+1)^m = 2^m$$
.

If the items are **indistinct**, but each is of a unique type, say Type I, . . ., Type κ say, (the so-called **Urn Model**) then, then a more general formula applies:

RESULT 4 The number of distinguishable permutations of n indistinct objects, comprising n_i items of type i for $i = 1, ..., \kappa$ is

$$\frac{n!}{n_1!n_2!\dots n_{\kappa}!}$$

Special Case : if $\kappa = 2$, then the number of distinguishable permutations of the n_1 objects of type I, and $n_2 = n - n_1$ objects of type II is

$$C_{n_2}^n = \frac{n!}{n_1!(n-n_1)!}$$

Also, there are C_r^n ways of partitioning n **distinct** items into two "cells", with r in one cell and n-r in the other.

1.7.4 PROBABILITY CALCULATIONS

Recall that if an experiment has N equally likely sample outcomes, and event E corresponds to a collection of sample outcomes of size n(E), then

$$P(E) = \frac{n(E)}{N}$$

Example 1.2 A True/False exam has 20 questions. Let E = "16 answers correct at random". Then

$$P(E) = \frac{\text{Number of ways of getting 16 out of 20 correct}}{\text{Total number of ways of answering 20 questions}} = \frac{\binom{20}{16}}{2^{20}} = 0.0046$$

Example 1.3 Sampling without replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects without replacement. Let E="precisely 2 Type I objects selected" We need to calculate N and n(E) in order to calculate P(E). In this case N is the number of ways of choosing 5 from 30 items, and hence

$$N = \binom{30}{5}$$

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and then choosing 3 Type II objects from 20, and hence, by the multiplication rule,

$$n(E) = \binom{10}{2} \binom{20}{3}$$

Therefore

$$P(E) = \frac{\binom{10}{2}\binom{20}{3}}{\binom{30}{5}} = 0.360$$

This result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$F = \bigcap_{i=1}^{5} F_{ij}$$

where F_{ij} = "type j object obtained on draw i" i = 1, ..., 5, j = 1, 2. Then

$$P(F) = P(F_{11})P(F_{21}|F_{11})\dots P(F_{52}|F_{11},F_{21},F_{32},F_{42}) = \frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26}$$

Now consider event G where G = "sequence of objects 12122 obtained". Then

$$P(G) = \frac{10}{30} \frac{20}{29} \frac{9}{28} \frac{19}{27} \frac{18}{26}$$

i.e. P(G) = P(F). In fact, **any** sequence containing two Type I and three Type II objects has this probability, and there are $\binom{5}{2}$ such sequences. Thus, as all such sequences are mutually exclusive,

$$P(E) = {5 \choose 2} \frac{10}{30} \frac{9}{29} \frac{20}{28} \frac{19}{27} \frac{18}{26} = \frac{{10 \choose 2} {20 \choose 3}}{{30 \choose 5}}.$$

Example 1.4 Sampling with replacement. Consider an Urn Model with 10 Type I objects and 20 Type II objects, and an experiment involving sampling five objects with replacement. Let E = "precisely 2 Type I objects selected". Again, we need to calculate N and n(E) in order to calculate P(E). In this case N is the number of ways of choosing 5 from 30 items with replacement, and hence

$$N = 30^5$$

To calculate n(E), we think of E occurring by first choosing 2 Type I objects from 10, and 3 Type II objects from 20 in any order. Consider such sequences of selection

Sequence Number of ways
$$\begin{array}{cccccc} & & & & & & \\ 1 & 1 & 2 & 2 & 2 & 10 \times 10 \times 20 \times 20 \times 20 \\ 1 & 2 & 1 & 2 & 2 & 10 \times 20 \times 10 \times 20 \times 20 \\ \vdots & & & \vdots & & \vdots \end{array}$$

etc., and thus a sequence with 2 Type I objects and 3 Type II objects can be obtained in 10^220^3 ways. As before there are $\binom{5}{2}$ such sequences, and thus

$$P(E) = \frac{\binom{5}{2} 10^2 20^3}{30^5} = 0.329.$$

Again, this result can be obtained using a conditional probability argument; consider event $F \subseteq E$, where F = "sequence of objects 11222 obtained". Then

$$P(F) = \left(\frac{10}{30}\right)^2 \left(\frac{20}{30}\right)^3$$

as the results of the draws are **independent**. This result is true for any sequence containing two Type I and three Type II objects, and there are $\binom{5}{2}$ such sequences that are mutually exclusive, so

$$P(E) = {5 \choose 2} \left(\frac{10}{30}\right)^2 \left(\frac{20}{30}\right)^3$$