556: Mathematical Statistics I

Some Mathematical Definitions and Results

Definition: Limits of sequences of reals

Sequence $\left\{a_{n}\right\}$ has limit a as $n \longrightarrow \infty$, written

$$
\lim _{n \longrightarrow \infty} a_{n}=a
$$

if, for every $\epsilon>0$, there exists an $N=N(\epsilon)$ such that $\left|a_{n}-a\right|<\epsilon$ for all $n>N$. We say that $\left\{a_{n}\right\}$ is a convergent sequence, and that $\left\{a_{n}\right\}$ converges to a.

Definition: Limits of functions

Let f be a real-valued function of real argument x.

- Limit as $x \longrightarrow \infty$:

$$
f(x) \longrightarrow a \quad \text { or } \quad \lim _{x \longrightarrow \infty} f(x)=a
$$

as $x \longrightarrow \infty$ if, every $\epsilon>0, \exists M=M(\epsilon)$ such that $|f(x)-a|<\epsilon, \forall x>M$

- Limit as $x \longrightarrow x_{0}^{ \pm}$:

$$
f(x) \longrightarrow a \quad \text { or } \quad \lim _{x \longrightarrow x_{0}^{ \pm}} f(x)=a
$$

as $x \longrightarrow x_{0}^{ \pm}$(that is, $x \longrightarrow x_{0}^{-}$means "from below" and $x \longrightarrow x_{0}^{+}$means "from above") if, for all $\epsilon>0, \exists \delta$ such that $|f(x)-a|<\epsilon, \forall x_{0}<x<x_{0}+\delta$ (or, respectively $x_{0}-\delta<x<x_{0}$).

- Left/Right Limit as $x \longrightarrow x_{0}$:

$$
f(x) \longrightarrow a \quad \text { or } \quad \lim _{x \longrightarrow x_{0}} f(x)=a
$$

as $x \longrightarrow x_{0}$ if

$$
\lim _{x \longrightarrow x_{0}^{+}} f(x)=\lim _{x \longrightarrow x_{0}^{-}} f(x)=a .
$$

Definition: Continuity

Consider function $f(x)$ with domain $\mathcal{X} \subseteq \mathbb{R}$.

- $f(x)$ is continuous at x_{0} if

$$
\lim _{x \longrightarrow x_{0}^{+}} f(x)=\lim _{x \longrightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)
$$

and all limits exist. That is, for all $\epsilon>0, \exists \delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

- $f(x)$ is uniformly continuous on \mathcal{X} if, for all $x_{1}, x_{2} \in \mathcal{X}, \exists \delta>0$ such that $\forall \epsilon>0$

$$
\left|x_{2}-x_{1}\right|<\delta \quad \Longrightarrow \quad\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\epsilon
$$

- $f(x)$ is absolutely continuous on \mathcal{X} if, for all $\epsilon>0, \exists \delta>0$ such that for any finite sequence of disjoint sub-intervals ($x_{k 1}, x_{k 2}$) for $k=1, \ldots, K$ with

$$
\sum_{k=1}^{K}\left(x_{k 2}-x_{k 1}\right)<\delta \quad \text { then } \quad \sum_{k=1}^{K}\left|f\left(x_{k 2}\right)-f\left(x_{k 1}\right)\right|<\epsilon
$$

Definition: Supremum and Infimum

A set of real values S is bounded above (bounded below) if there exists a real number a (b) such that, for all $x \in S, x \leq a(x \geq b)$. The quantity $a(b)$ is an upper bound (lower bound). A real value $a_{L}\left(b_{U}\right)$ is a least upper bound (greatest lower bound) if it is an upper bound (a lower bound) of S, and no other upper (lower) bound is smaller (larger) than $a_{L}\left(b_{U}\right)$. We write

$$
a_{L}=\sup S \quad b_{U}=\inf S
$$

for the a_{L}, the supremum, and b_{U}, the infimum of S.
If S comprises a sequence of elements $\left\{x_{n}\right\}$, then we can write

$$
a_{L}=\sup _{x_{n} \in S} x_{n} \equiv \sup _{n} x_{n} \quad b_{U}=\inf _{x_{n} \in S} x_{n} \equiv \inf _{n} x_{n} .
$$

A sequence that is both bounded above and bounded below is termed bounded. Any bounded, monotone real sequence is convergent.

Definition: Limit Superior and Limit Inferior

Suppose that $\left\{x_{n}\right\}$ is a bounded real sequence. Define sequences $\left\{y_{k}\right\}$ and $\left\{z_{k}\right\}$ by

$$
y_{k}=\inf _{n \geq k} x_{n} \quad z_{k}=\sup _{n \geq k} x_{n}
$$

Then $\left\{y_{k}\right\}$ is bounded non-decreasing and $\left\{z_{k}\right\}$ is bounded non-increasing, and

$$
\lim _{k \rightarrow \infty} y_{k}=\sup _{k} y_{k} \quad \text { and } \quad \lim _{k \rightarrow \infty} z_{k}=\inf _{k} z_{k}
$$

and we can consider the limits of these convergent sequences, known as the lim sup and lim inf:

- lim sup is the limiting least upper bound
- \lim inf is the limiting greatest lower bound

Specifically, we define the limit superior (or upper limit, or lim sup) and the limit inferior (or lower limit, or lim inf) by

$$
\begin{aligned}
& \limsup _{n \longrightarrow \infty} x_{n}=\lim _{k \rightarrow \infty} \sup _{n \geq k} x_{n}=\inf _{k} \sup _{n \geq k} x_{n}=\varlimsup x_{n} \\
& \liminf _{n \longrightarrow \infty} x_{n}=\lim _{k \rightarrow \infty} \inf _{n \geq k} x_{n}=\sup _{k} \inf _{n \geq k} x_{n}=\underline{\lim } x_{n}
\end{aligned}
$$

Then we have $\underline{\lim } x_{n} \leq \overline{\lim } x_{n}$ and $\lim x_{n}=x$ if and only if $\underline{\lim } x_{n}=x=\overline{\lim } x_{n}$.
We can define the same concepts for real functions; we write

$$
\limsup _{x \longrightarrow \infty} f(x)=\lim _{y \longrightarrow \infty}\left\{\sup _{x \geq y}\{f(x)\}\right\} \quad \liminf _{x \longrightarrow \infty} f(x)=\lim _{y \longrightarrow \infty}\left\{\inf _{x \geq y}\{f(x)\}\right\}
$$

and the limit as $x \longrightarrow \infty$ exists if and only if

$$
\limsup _{x \rightarrow \infty} f(x)=\liminf _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} f(x) .
$$

For example, the function $f(x)=\cos (x)$ does not converge to any limit as $x \longrightarrow \infty$. But

$$
\sup _{x \geq y}\{\cos (x)\}=1 \quad \Longrightarrow \quad \limsup _{x \longrightarrow \infty} f(x)=\lim _{y \longrightarrow \infty}\left\{\sup _{x \geq y}\{\cos (x)\}\right\}=\lim _{y \longrightarrow \infty}\{1\}=1
$$

and similarly $\liminf _{x \longrightarrow \infty} f(x)=-1$

Definition: Order Notation ("little oh" and "big oh")

Consider $x \longrightarrow x_{0}$ where x_{0} is possibly $\pm \infty$. Then we write

$$
\begin{aligned}
& f(x) \sim g(x) \quad \text { if } \quad \frac{f(x)}{g(x)} \longrightarrow 1 \quad \text { as } \quad x \longrightarrow x_{0} \\
& f(x)=\mathrm{o}(g(x)) \quad \text { if } \quad \frac{f(x)}{g(x)} \longrightarrow 0 \quad \text { as } \quad x \longrightarrow x_{0} \\
& f(x)=\mathrm{O}(g(x)) \quad \text { if } \quad \frac{f(x)}{g(x)} \longrightarrow b \quad \text { as } \quad x \longrightarrow x_{0}, \text { for some } b
\end{aligned}
$$

with similar notation for real sequences. For example

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots=x+\mathrm{o}(x)
$$

as $x \longrightarrow 0$, and

$$
(x+1)^{3}=x^{3}+3 x^{2}+3 x+1=x^{3}+\mathbf{o}\left(x^{3}\right)=\mathbf{o}\left(x^{4}\right)
$$

as $x \longrightarrow \infty$.
Leibniz's Rule: Let $f(x, t)$ be a real-valued function that is continuous in t and x at least on the closed region $\mathcal{R} \in \mathbb{R}^{2}$

$$
\mathcal{R} \equiv\left\{(x, t) \in \mathbb{R}^{2}: a(t) \leq x \leq b(t), t_{0} \leq t \leq t_{1}\right\}
$$

where $a($.$) and b($.$) are continuous functions of t$ with continuous derivatives wrt t for $t_{0} \leq t \leq t_{1}$. Suppose also that the partial derivative

$$
\frac{\partial f(x, t)}{\partial t}
$$

is also continuous in x and t at least on \mathcal{R}. Then for $t_{0} \leq t \leq t_{1}$ we have that

$$
\frac{d}{d t}\left\{\int_{a(t)}^{b(t)} f(x, t) d x\right\}=f(b(t), t) \frac{d b(t)}{d t}-f(a(t), t) \frac{d a(t)}{d t}+\int_{a(t)}^{b(t)} \frac{\partial f(x, t)}{\partial t} d x
$$

Note that if $a(t)=a$ and $b(t)=b$ are constant functions, then

$$
\frac{d}{d t}\left\{\int_{a}^{b} f(x, t) d x\right\}=\int_{a}^{a} \frac{\partial f(x, t)}{\partial t} d x
$$

- Series Summations:

GEOMETRIC

EXPONENTIAL

$$
\begin{array}{rlrl}
\frac{1}{1-z} & =1+z+z^{2}+\cdots=\sum_{k=0}^{\infty} z^{k} & |z|<1 \\
e^{z} & =1+z+\frac{z^{2}}{2!}+\cdots=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} & & z \in \mathbb{R}
\end{array}
$$

BINOMIAL $\quad(n=1,2, \cdots)$

$$
(1+z)^{n}=1+n z+\frac{n(n-1)}{2!} z^{2}+\cdots+\alpha z^{n-1}+z^{n}=\sum_{k=0}^{n}\binom{n}{k} z^{k}
$$

BINOMIAL $\quad(\alpha>0)$

$$
(1+z)^{\alpha}=1+\alpha z+\frac{\alpha(\alpha-1)}{2!} z^{2}+\cdots=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

NEG. BINOMIAL $\quad(\alpha>0) \quad \frac{1}{(1-z)^{\alpha}}=1+\alpha z+\frac{\alpha(\alpha+1)}{2!} z^{2}+\cdots=\sum_{k=0}^{\infty}\binom{\alpha+k-1}{k} z^{k} \quad|z|<1$

LOGARITHMIC

$$
\begin{aligned}
-\log (1-z) & =z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\cdots=\sum_{k=1}^{\infty} \frac{z^{k}}{k} \quad|z|<1 \\
\log (1+z) & =z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\cdots=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{z^{k}}{k} \quad|z|<1
\end{aligned}
$$

where, if $\Gamma($.$) is the gamma function, in general$

$$
\binom{\theta}{x}=\frac{\Gamma(\theta+1)}{\Gamma(x+1) \Gamma(\theta-x+1)} .
$$

- Exponential Function: For real $x>0$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{-n}=e^{x} \quad \lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{-n}=e^{-x}
$$

- Taylor Series: For real-valued scalar function f and real number x_{0}, under mild regularity assumptions

$$
f(x)=\sum_{k=0}^{\infty} \frac{\left(x-x_{0}\right)^{k}}{k!} f^{k}\left(x_{0}\right)=\sum_{k=0}^{r} \frac{\left(x-x_{0}\right)^{k}}{k!} f^{k}\left(x_{0}\right)+\mathbf{o}\left(\left(x-x_{0}\right)^{r}\right)
$$

where the approximation holds as $x \longrightarrow x_{0}$, and

$$
f^{k}\left(x_{0}\right)=\frac{d^{k}}{d x^{k}}\{f(x)\}_{x=x_{0}}
$$

if this derivative exists.

