MATH 556-EXERCISES 7: Solutions

1. (a) $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so in the limit as $n \longrightarrow \infty$ we have the limit for fixed y as

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=y^{n} \longrightarrow \begin{cases}0 & y<1 \\ 1 & y \geq 1\end{cases}
$$

that is, a step function with single step of size 1 at $y=1$. Hence the limiting random variable Y is a discrete variable with $P[Y=1]=1$, that is, the limiting distribution is degenerate at 1 . For $Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ so in the limit as $n \longrightarrow \infty$ we have the limit for fixed z as

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-(1-z)^{n} \longrightarrow\left\{\begin{array}{cc}
0 & z \leq 0 \\
1 & z>0
\end{array}\right.
$$

that is, a step function with single step of size 1 at $z=0$. Hence the limiting random variable Z is a discrete variable with $P[Z=0]=1$: the limiting distribution is degenerate at 0 . Note here that the limiting function is not a cdf as it is not right-continuous, but that the limiting distribution does still exist - the ordinary definition of convergence in distribution only refers to pointwise convergence at points of continuity of the limit function, and here is limit function is not continuous at zero.

Note that these results are intuitively reasonable as, as the sample size gets increasingly large, we will obtain a random variable arbitrarily close to each end of the range. Note also that these results describe convergence in distribution, but also we have for $1>\varepsilon>0$, as $n \longrightarrow \infty$

$$
\begin{aligned}
& P\left[\left|Y_{n}-1\right|<\varepsilon\right]=P\left[1-Y_{n}<\varepsilon\right]=P\left[1-\varepsilon<Y_{n}\right]=1-P\left[Y_{n}<1-\varepsilon\right]=1-\varepsilon^{n} \longrightarrow 1 \\
& P\left[\left|Z_{n}-0\right|<\varepsilon\right]=P\left[Z_{n}<\varepsilon\right]=1-(1-\varepsilon)^{n} \longrightarrow 1
\end{aligned}
$$

so we also have convergence in probability of Y_{n} to 1 and of Z_{n} to 0 .
(b) $Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-\left(1-\left(1-\frac{1}{z}\right)\right)^{n}=1-\frac{1}{z^{n}} \quad z>1
$$

and so, in the limit as $n \longrightarrow \infty$ we have the limit for fixed z as

$$
F_{Z_{n}}(z) \longrightarrow \begin{cases}0 & z \leq 1 \\ 1 & z>1\end{cases}
$$

that is, a step function with single step of size 1 at $z=1$. Hence the limiting random variable Z is a discrete variable with

$$
P[Z=1]=1
$$

and the limiting distribution is degenerate at 1 . Again, here, the limiting function is not a cdf as it not right continuous.
Now if $U_{n}=Z_{n}^{n}$, we have from first principles that for $u>1$

$$
F_{U_{n}}(u)=P\left[U_{n} \leq u\right]=P\left[Z_{n}^{n} \leq u\right]=P\left[Z_{n} \leq u^{1 / n}\right]=1-\frac{1}{\left(u^{1 / n}\right)^{n}}=1-\frac{1}{u}
$$

which is a valid cdf, but which does not depend on n. Hence the limiting distribution of U_{n} is precisely

$$
F_{U}(u)=1-\frac{1}{u} \quad u>1
$$

(c) $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(\frac{1}{1+e^{-y}}\right)^{n} \quad y \in \mathbb{R}
$$

and so, in the limit as $n \longrightarrow \infty$ we have the limit for fixed y as $F_{Y_{n}}(y) \longrightarrow 0$ for all y. Hence there is no limiting distribution.
However if $U_{n}=Y_{n}-\log n$, we have from first principles that for $u>-\log n$

$$
\begin{aligned}
F_{U_{n}}(u)=P\left[U_{n} \leq u\right] & =P\left[Y_{n}-\log n \leq u\right] \\
& =P\left[Y_{n} \leq u+\log n\right]=F_{Y_{n}}(u+\log n)=\left(\frac{1}{1+e^{-u-\log n}}\right)^{n}
\end{aligned}
$$

so that

$$
F_{U_{n}}(u)=\left(\frac{1}{1+\frac{e^{-u}}{n}}\right)^{n}=\left(1+\frac{e^{-u}}{n}\right)^{-n} \longrightarrow \exp \left\{-e^{-u}\right\} \quad \text { as } n \longrightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{U}(u)=\exp \left\{-e^{-u}\right\} \quad u \in \mathbb{R}
$$

(d) $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ so

$$
F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(\frac{\lambda y}{1+\lambda y}\right)^{n} \quad y>0
$$

and so, in the limit as $n \longrightarrow \infty$ we have the limit for fixed y as

$$
F_{Y_{n}}(y) \longrightarrow 0 \quad \text { for all } y
$$

Hence there is no limiting distribution.
$Z_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ so in the limit as $n \longrightarrow \infty$ we have the limit for fixed $z>0$ as
$F_{Z_{n}}(z)=1-\left\{1-F_{X}(z)\right\}^{n}=1-\left(1-\left(1-\frac{1}{1+\lambda z}\right)\right)^{n}=1-\frac{1}{(1+\lambda z)^{n}} \longrightarrow \begin{cases}0 & z \leq 0 \\ 1 & z>0\end{cases}$
that is, a step function with single step of size 1 at $z=0$. Hence the limiting random variable Z is a discrete variable with $\mathrm{P}[Z=0]=1$ that is, the limiting distribution is degenerate at 0 . Again, the limiting function is not a cdf as it not right continuous, but this does not affect out conclusion, as the limit function is not continuous at 0 .
If $U_{n}=Y_{n} / n$, we have from first principles that for $u>0$

$$
F_{U_{n}}(u)=P\left[U_{n} \leq u\right]=P\left[Y_{n} / n \leq u\right]=P\left[Y_{n} \leq n u\right]=F_{Y_{n}}(n u)=\left(\frac{\lambda n u}{1+\lambda n u}\right)^{n}
$$

so that

$$
F_{U_{n}}(u)=\left(\frac{\lambda n u}{1+\lambda n u}\right)^{n}=\left(1+\frac{1}{n \lambda u}\right)^{-n} \longrightarrow \exp \left\{-\frac{1}{\lambda u}\right\} \quad \text { as } n \longrightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{U}(u)=\exp \left\{-\frac{1}{\lambda u}\right\} \quad u>0
$$

If $V_{n}=n Z_{n}$, we have from first principles that for $u>0$

$$
F_{V_{n}}(v)=P\left[V_{n} \leq v\right]=P\left[n Z_{n} \leq v\right]=P\left[Z_{n} \leq v / n\right]=F_{Z_{n}}(v / n)=1-\left(\frac{1}{1+\frac{\lambda v}{n}}\right)^{n}
$$

so that

$$
F_{V_{n}}(v)=1-\left(1+\frac{\lambda v}{n}\right)^{-n}=1-\left(1+\frac{\lambda v}{n}\right)^{-n} \longrightarrow 1-\exp \{-\lambda v\} \quad \text { as } n \longrightarrow \infty
$$

which is a valid cdf. Hence the limiting distribution is

$$
F_{V}(v)=1-\exp \{-\lambda v\} \quad v>0
$$

Hence the limiting random variable $V \sim \operatorname{Exponential}(\lambda)$.

$$
\begin{aligned}
& Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\} \text { so } \\
& \qquad F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}=\left(1-e^{-\lambda y}\right)^{n} \quad y>0
\end{aligned}
$$

2. Key is to find the i.i.d random variables X_{1}, \ldots, X_{n} such that

$$
X=\sum_{i=1}^{n} X_{i}
$$

and then to use the Central Limit Theorem result for large n

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}} \xrightarrow{d} Z \sim \operatorname{Normal}(0,1) \quad \therefore \quad X=\sum_{i=1}^{n} X_{i} \sim \mathcal{A} \mathcal{N}\left(n \mu, n \sigma^{2}\right)
$$

where $\mu=\mathbb{E}_{X}\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}_{X}\left[X_{i}\right]$
(a) $X \sim \operatorname{Binomial}(n, \theta) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Bernoulli}(\theta)$ so that $\mu=\mathbb{E}_{X}\left[X_{i}\right]=\theta$ and $\sigma^{2}=\operatorname{Var}_{X}\left[X_{i}\right]=\theta(1-\theta)$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \theta}{\sqrt{n \theta(1-\theta)}} \xrightarrow{d} \operatorname{Normal}(0,1) \quad \therefore \quad X \sim \mathcal{A N}(n \theta, n \theta(1-\theta))
$$

(b) $X \sim \operatorname{Poisson}(\lambda) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Poisson}(\lambda / n)$ so that $\mu=\mathbb{E}_{X}\left[X_{i}\right]=\lambda / n$ and $\sigma^{2}=\operatorname{Var}_{X}\left[X_{i}\right]=\lambda / n$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \frac{\lambda}{n}}{\sqrt{n(\lambda / n)}}=\frac{\sum_{i=1}^{n} X_{i}-\lambda}{\sqrt{\lambda}} \xrightarrow{d} \operatorname{Normal}(0,1) \quad \therefore \quad X \sim \mathcal{A N}(\lambda, \lambda)
$$

Note that this uses the result that the sum of independent Poisson variables also has a Poisson distribution (proved using mgfs), and also note that this is in agreement with the mgf limit result.
(c) $X \sim \operatorname{NegBinomial}(n, \theta) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Geometric}(\theta)$ so that $\mu=\mathbb{E}_{X}\left[X_{i}\right]=1 / \theta$ and $\sigma^{2}=\operatorname{Var}_{f_{X}}\left[X_{i}\right]=(1-\theta) / \theta^{2}$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \frac{1}{\theta}}{\sqrt{n\left((1-\theta) / \theta^{2}\right)}} \xrightarrow{d} \operatorname{Normal}(0,1) \quad \therefore \quad X \sim \mathcal{A N}\left(\frac{n}{\theta}, \frac{n(1-\theta)}{\theta^{2}}\right)
$$

(d) $X \sim \operatorname{Gamma}(\alpha, \beta) \Longrightarrow X=\sum_{i=1}^{n} X_{i}$ where $X_{i} \sim \operatorname{Gamma}\left(\frac{\alpha}{n}, \beta\right)$ so that $\mu=\mathbb{E}_{X}\left[X_{i}\right]=\frac{\alpha}{n \beta}$ and $\sigma^{2}=\operatorname{Var}_{X}\left[X_{i}\right]=\frac{\alpha}{n \beta^{2}}$ and hence

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \frac{\alpha}{n \beta}}{\sqrt{n \alpha /\left(n \beta^{2}\right)}}=\frac{\sum_{i=1}^{n} X_{i}-\frac{\alpha}{\beta}}{\sqrt{\alpha / \beta^{2}}} \xrightarrow{d} \operatorname{Normal}(0,1) \quad \therefore \quad X \sim \mathcal{A N}\left(\frac{\alpha}{\beta}, \frac{\alpha}{\beta^{2}}\right)
$$

3. $X_{i} \sim \operatorname{Poisson}(\lambda)$ so $\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(n \lambda)$ by mgfs and hence by the CLT,

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{A N}(n \lambda, n \lambda) \quad \therefore \quad \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{A N}\left(\lambda, \frac{\lambda}{n}\right)
$$

and hence, for $\varepsilon>0$

$$
P[|\bar{X}-\lambda|<\varepsilon]=P[\lambda-\varepsilon<\bar{X}<\lambda+\varepsilon] \approx \Phi\left(\frac{\varepsilon}{\sqrt{\lambda / n}}\right)-\Phi\left(\frac{-\varepsilon}{\sqrt{\lambda / n}}\right) \longrightarrow 1
$$

as $n \longrightarrow \infty$. Hence, \bar{X} converges in probability to λ

$$
\bar{X} \xrightarrow{p} \lambda
$$

Now, if $T_{n}=\exp \left\{-M_{n}\right\}$, then for $\varepsilon>0$ we have

$$
P\left[\left|T_{n}-e^{-\lambda}\right|<\varepsilon\right]=P\left[e^{-\lambda}-\varepsilon<T_{n}<e^{-\lambda}+\varepsilon\right]=P\left[-\log \left(e^{-\lambda}+\varepsilon\right)<M_{n}<-\log \left(e^{-\lambda}-\varepsilon\right)\right]
$$

and hence

$$
P\left[\left|T_{n}-e^{-\lambda}\right|<\varepsilon\right]=\approx \Phi\left(\frac{-\log \left(e^{-\lambda}-\varepsilon\right)-\lambda}{\sqrt{\lambda / n}}\right)-\Phi\left(\frac{-\log \left(e^{-\lambda}+\varepsilon\right)-\lambda}{\sqrt{\lambda / n}}\right) \rightarrow 1
$$

as $n \longrightarrow \infty$. Hence, T_{n} converges in probability to $e^{-\lambda}$.
4. (a) Clearly if the sequence converges, it converges to 1 or 2 , and as $n \longrightarrow \infty$ it is clear that the probability $P\left[X_{n}=1\right] \longrightarrow 0$, so we check whether the limit is 2 .

We have

$$
E\left[\left|X_{n}-2\right|^{2}\right]=\left(|-1|^{2} \times \frac{1}{n}\right)+\left(|0|^{2} \times \frac{n-1}{n}\right)=\frac{1}{n} \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so $X_{n} \xrightarrow{r=2} 2$; we can also prove directly that, for $\epsilon>0$,

$$
P\left[\left|X_{n}-2\right|<\epsilon\right]=P\left[X_{n}=2\right]=1-\frac{1}{n} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty
$$

so $X_{n} \xrightarrow{p} 2$ (although this does follow because of the convergence in $r=2$ mean).
(b) Here it seems that X_{n} may converge to 1 ; we have

$$
E\left[\left|X_{n}-1\right|^{2}\right]=\left(\left|n^{2}-1\right|^{2} \times \frac{1}{n}\right)+\left(|0|^{2} \times \frac{n-1}{n}\right)=\frac{\left(n^{2}-1\right)^{2}}{n} \nrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so X_{n} does not converge in $r=2$ mean to 1 ; by similar arguments, it can be shown that X_{n} does not converge in this mode to any fixed constant. However, we can prove that, for $\epsilon>0$,

$$
P\left[\left|X_{n}-1\right|<\epsilon\right]=P\left[X_{n}=1\right]=1-\frac{1}{n} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty \quad \therefore X_{n} \xrightarrow{p} 1 .
$$

(c) Here it seems that X_{n} may converge to 0 ; we have

$$
E\left[\left|X_{n}-0\right|^{2}\right]=\left(|n|^{2} \times \frac{1}{\log n}\right)+\left(|0|^{2} \times 1-\frac{1}{\log n}\right)=\frac{n^{2}}{\log n} \nrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

so X_{n} does not converge in $r=2$ mean to 0; by similar arguments, it can be shown that X_{n} does not converge in this mode to any fixed constant. However, for $\epsilon>0$,

$$
P\left[\left|X_{n}-0\right|<\epsilon\right]=P\left[X_{n}=0\right]=1-\frac{1}{\log n} \longrightarrow 1 \quad \text { as } n \longrightarrow \infty \quad X_{n} \xrightarrow{p} 0 .
$$

1.* (a) Let A_{n} be the event $\left(X_{n} \neq 0\right)$. Then $P\left(A_{n}\right)=1 / n$, and hence

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty
$$

The events A_{1}, A_{2}, \ldots are independent, so by the BC Lemma part (II),

$$
P\left(A_{n} \text { occurs i.o }\right)=1,
$$

so X_{n} does not converge a.s. to $0 . X_{n}$ only takes values in $\{0,1\}$, and $P\left[X_{n}=0\right]>0$ for any finite n, so X_{n} does not converge to 1 a.s. either. Hence X_{n} does not converge a.s. to any real value.
(b) We have

$$
E\left[\left|X_{n}\right|\right]=E\left[I_{\left[0, n^{-1}\right)}\left(U_{n}\right)\right]=P\left[U_{n} \leq n^{-1}\right]=\frac{1}{n}
$$

so

$$
X_{n} \xrightarrow{r=1} X_{B}
$$

where $P\left[X_{B}=0\right]=1$, and we have convergence in $r^{t h}$ mean to zero for $r=1$.
2.* $P\left[X_{n}=0\right] \longrightarrow 1$ as $n \longrightarrow \infty$, so we check zero as a possible limiting variable. For a.s. convergence,

$$
P\left[\lim _{n \longrightarrow \infty}\left|X_{n}\right|<\epsilon\right]=P\left[\lim _{n \longrightarrow \infty} X_{n}<\epsilon\right]=P[Z<1]=1
$$

as the sequence of sets defined by $\left(0,1-n^{-1}\right)$ increases to limit $(0,1)$ as $n \longrightarrow \infty$, so we do have a.s. convergence to zero. However, for convergence in r th mean: we have

$$
E\left[\left|X^{r}\right|\right]=n^{r} \times P[X=n]+0 \times P[X=0]=\frac{n^{r}}{n}
$$

so $\left\{X_{n}\right\}$ does not converge in r th mean to zero for any $r \geq 1$.
3.* Here we use the Borel-Cantelli Lemma, part (b); as

$$
\sum_{n=1}^{\infty} P\left[X_{n}=1\right]=\infty
$$

and the events concerned are independent, then $P\left[X_{n}=1\right.$ infinitely often $]=1$.

