## MATH 556 - EXERCISES 6: Solutions

1. (a) By direct calculation the mgf of $Y_{i}=X_{i}^{2}$ is

$$
M_{Y_{i}}(t)=\mathbb{E}_{X_{i}}\left[e^{t X_{i}^{2}}\right]=\int_{-\infty}^{\infty} e^{t x^{2}}\left(\frac{1}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{1}{2}\left(x-\mu_{i}\right)^{2}\right\} d x=\left(\frac{1}{1-2 t}\right)^{1 / 2} \exp \left\{\frac{\mu_{i}^{2} t}{1-2 t}\right\}
$$

whenever $-1 / 2<t<1 / 2$, after completing the square in $x$ in the exponent and integrating the result, in which the integrand is proportional to a normal pdf. Hence, using the result for independent rvs, writing $\theta=\sum_{i=1}^{r} \mu_{i}^{2}$

$$
M_{Y}(t)=\prod_{i=1}^{r} M_{Y_{i}}(t)=\left(\frac{1}{1-2 t}\right)^{r / 2} \exp \left\{\frac{\theta t}{1-2 t}\right\} .
$$

The distribution of $Y$ here is the non-central Chisquared distribution with $r$ degrees of freedom and non-centrality parameter $\mu$.
(b) Many possible routes to compute the result. Could differentiate the mgf, or use direct calculation, or differentiate the cumulant generating function three times and evaluate at zero;

$$
K_{Y}(t)=\log M_{Y}(t)=-\frac{r}{2} \log (1-2 t)+\frac{\theta t}{1-2 t}
$$

so

$$
K_{Y}^{(1)}(t)=\frac{r}{1-2 t}+\frac{(1-2 t) \theta+2 \theta t}{(1-2 t)^{2}}=\frac{r}{1-2 t}+\frac{\theta}{(1-2 t)^{2}}
$$

so that $\mu=\mathbb{E}_{Y}[Y]=K_{Y}^{(1)}(0)=r+\theta$.

$$
K_{Y}^{(2)}(t)=\frac{2 r}{(1-2 t)^{2}}+\frac{4 \theta}{(1-2 t)^{3}}
$$

so that $\sigma^{2}=\operatorname{Var}_{f_{Y}}[Y]=K_{Y}^{(2)}(0)=2 r+4 \theta=2(r+2 \theta)$. Finally,

$$
K_{Y}^{(3)}(t)=\frac{8 r}{(1-2 t)^{3}}+\frac{24 \theta}{(1-2 t)^{4}}
$$

so that

$$
\mathbb{E}_{Y}\left[(Y-\mu)^{3}\right]=K_{Y}^{(3)}(0)=8 r+24 \theta
$$

yielding that

$$
\varsigma=\frac{\mathbb{E}_{Y}\left[(Y-\mu)^{3}\right]}{\sigma^{3}}=\frac{8 r+24 \theta}{(2 r+4 \theta)^{3 / 2}}=\frac{2^{3 / 2}(r+3 \theta)}{(r+2 \theta)^{3 / 2}}
$$

It is easy to verify that $K_{X}^{(3)}(0)=\mathbb{E}_{X}\left[(X-\mu)^{3}\right]$ by direct evaluation, complementing the results that $K_{X}^{(1)}(0)=\mathbb{E}_{X}[X]$ and $K_{X}^{(2)}(0)=\mathbb{E}_{X}\left[(X-\mu)^{2}\right]$.
2. (a) By iterated expectation, using the formula sheet to quote expectations for Gamma and Poisson

$$
\mathbb{E}_{X}[X]=\mathbb{E}_{N}\left[\mathbb{E}_{X \mid N}[X \mid N]\right]=\mathbb{E}_{N}\left[\frac{N+r / 2}{1 / 2}\right]=\frac{\mathbb{E}_{N}[N]+r / 2}{1 / 2}=\frac{\lambda+r / 2}{1 / 2}=2 \lambda+r
$$

(b) By the same method of iterated expectation, for $-1 / 2<t<1 / 2$,

$$
\begin{aligned}
M_{X}(t)=\mathbb{E}_{X}\left[e^{t X}\right] & =\mathbb{E}_{N}\left[\mathbb{E}_{X \mid N}\left[e^{t X} \mid N\right]\right]=\mathbb{E}_{N}\left[\left(\frac{1 / 2}{1 / 2-t}\right)^{N+r / 2}\right] \\
& =\left(\frac{1 / 2}{1 / 2-t}\right)^{r / 2} \mathbb{E}_{N}\left[\left(\frac{1 / 2}{1 / 2-t}\right)^{N}\right] \\
& =\left(\frac{1}{1-2 t}\right)^{r / 2} G_{N}\left(\frac{1}{1-2 t}\right) \\
& =\left(\frac{1}{1-2 t}\right)^{r / 2} \exp \left\{\lambda\left(\frac{1}{1-2 t}-1\right)\right)=\left(\frac{1}{1-2 t}\right)^{r / 2} \exp \left\{\frac{2 \lambda t}{1-2 t}\right\}
\end{aligned}
$$

The distribution of $Y$ here is again the non-central Chisquared distribution with $r$ degrees of freedom and non-centrality parameter $\lambda$, identical to the form found in Q1 (a).
3. By iterated expectation

$$
\mathbb{E}_{X_{1}}\left[X_{1}\right]=\mathbb{E}_{M}\left[\mathbb{E}_{X_{1} \mid M}\left[X_{1} \mid M\right]\right]=\mathbb{E}_{M}[M]=\mu
$$

and

$$
\mathbb{E}_{X_{1}}\left[X_{1}^{2}\right]=\mathbb{E}_{M}\left[\mathbb{E}_{X_{1} \mid M}\left[X_{1}^{2} \mid M\right]\right]=\mathbb{E}_{M}\left[M^{2}+\sigma^{2}\right]=\mu^{2}+\tau^{2}+\sigma^{2}
$$

so that

$$
\operatorname{Var}_{X_{1}}\left[X_{1}\right]=\mathbb{E}_{X_{1}}\left[X_{1}^{2}\right]-\left\{\mathbb{E}_{X_{1}}\left[X_{1}\right]\right\}^{2}=\tau^{2}+\sigma^{2} .
$$

By symmetry of form, $\mathbb{E}_{X_{2}}\left[X_{2}\right]=\mu$ and $\operatorname{Var}_{X_{2}}\left[X_{2}\right]=\tau^{2}+\sigma^{2}$. Now,

$$
\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]=\mathbb{E}_{M}\left[\mathbb{E}_{X_{1}, X_{2} \mid M}\left[X_{1} X_{2} \mid M\right]\right]=\mathbb{E}_{M}\left[\mathbb{E}_{X_{1} \mid M}\left[X_{1} \mid M\right] \times \mathbb{E}_{X_{2} \mid M}\left[X_{2} \mid M\right]\right]
$$

by conditional independence. Therefore

$$
\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]=\mathbb{E}_{M}[M \times M]=\mathbb{E}_{M}\left[M^{2}\right]=\mu^{2}+\tau^{2}
$$

Hence

$$
\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]=\mathbb{E}_{X_{1}, X_{2}}\left[X_{1} X_{2}\right]-\mathbb{E}_{X_{1}}\left[X_{1}\right] \mathbb{E}_{X_{2}}\left[X_{2}\right]=\mu^{2}+\tau^{2}-\mu^{2}=\tau^{2}
$$

and

$$
\operatorname{Corr}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]=\frac{\operatorname{Cov}_{X_{1}, X_{2}}\left[X_{1}, X_{2}\right]}{\sqrt{\operatorname{Var}_{X_{1}}\left[X_{1}\right] \operatorname{Var}_{X_{2}}\left[X_{2}\right]}}=\frac{\tau^{2}}{\tau^{2}+\sigma^{2}}
$$

$X_{1}$ and $X_{2}$ are not independent; their covariance is non zero.
4. As

$$
S_{i+1}=\sum_{j=1}^{s_{i}} N_{i j}+K_{i}
$$

with all variables independent, we have immediately using the result from lectures, and properties of pgfs, that

$$
G_{i+1}(t)=G_{i}\left(G_{N}(t)\right) G_{K}(t)=G_{N}\left(G_{i}(t)\right) G_{K}(t)
$$

where $G_{i}$ is the pgf of $S_{i}$.
Note that

$$
G_{N}\left(G_{i}(t)\right)=G_{N}\left(G_{N}\left(G_{i-1}(t)\right)\right)=\cdots=G_{N}\left(G_{N}\left(\ldots G_{N}(t) \ldots\right)\right)
$$

iterating $i$ times inside, but taking the $i-1$ outer computations together yields

$$
G_{i-1}\left(G_{N}(t)\right)
$$

