MATH 556 - EXERCISES 5: Solutions

1. (a) This is not an Exponential Family distribution; the support is parameter dependent.
(b) This is an EF distribution with $m=1$:

$$
f(x ; \theta)=\frac{\mathbb{1}_{\{1,2,3, \ldots\}}(x)}{x} \frac{-1}{\log (1-\theta)} \exp \{x \log \theta\}=\exp \{c(\theta) T(x)-A(\theta)\} h(x)
$$

- $h(x)=\frac{\mathbb{1}_{\{1,2,3, \ldots\}}(x)}{x}$
- $A(\theta)=\log (-\log (1-\theta))$
- $c(\theta)=\log (\theta)$
- $T(x)=x$
so the natural parameter is $\eta=\log (\theta)$.

2. (a) Suppose that $\eta_{1}, \eta_{2} \in \mathcal{H}$ and $0 \leq t \leq 1$. Then

$$
\begin{aligned}
\int h(x) e^{\left(t \eta_{1}+(1-t) \eta_{2}\right)^{\top} T(x)} d x & =\int h(x) e^{\left(t \eta_{1}\right)^{\top} T(x)} e^{\left((1-t) \eta_{2}\right)^{\top} T(x)} d x \\
& \leq\left\{\int h(x) e^{\left(t \eta_{1}\right)^{\top} T(x)} d x\right\}\left\{\int h(x) e^{\left((1-t) \eta_{2}\right)^{\top} T(x)} d x\right\} \\
& \leq\left\{\int h(x) e^{\eta_{1}^{\top} T(x)} d x\right\}^{t}\left\{\int h(x) e^{\eta_{2}^{\top} T(x)} d x\right\}^{(1-t)}<\infty
\end{aligned}
$$

so $t \eta_{1}+(1-t) \eta_{2} \in \mathcal{H}$.
(b) By inspection

$$
\log \frac{f_{X}\left(x ; \eta_{1}\right)}{f_{X}\left(x ; \eta_{2}\right)}=\left(\eta_{1}-\eta_{2}\right) T(x)-\left(K\left(\eta_{1}\right)-K\left(\eta_{2}\right)\right)
$$

Note that this ratio is zero for all x if and only if $\eta_{1}=\eta_{2}$, unless $T(x)$ is a constant, t_{0}, say, for all x. In this latter case, we have that

$$
K(\eta)=\log \left\{\int h(x) \exp \left\{\eta t_{0}\right\} d x\right\}=\eta t_{0}
$$

in which case

$$
\log \frac{f_{X}\left(x ; \eta_{1}\right)}{f_{X}\left(x ; \eta_{2}\right)}=\left(\eta_{1}-\eta_{2}\right) t_{0}-\left(\eta_{1} t_{0}-\eta_{2} t_{0}\right)=0
$$

also, for any η_{1} and η_{2}. Hence we can conclude that the EF model is identifiable

$$
f_{X}\left(x ; \eta_{1}\right)=f_{X}\left(x ; \eta_{2}\right) \quad \Longleftrightarrow \quad \eta_{1}=\eta_{2}
$$

unless $T(X)$ has a degenerate distribution (for a value $\eta_{0} \in \mathcal{H}$).

