MATH 556 - EXERCISES 4: Solutions

1. By direct calculation, we have by the theorem of total probability for $y \geq 2$,

$$
f_{Y}(y)=P_{Y}[Y=y]=\sum_{x_{1}=1}^{\infty} P_{X_{1}, X_{2}}\left[X_{1}=x_{1}, X_{2}=y-x_{1}\right]=\sum_{x_{1}=1}^{y-1} P_{X_{1}}\left[X_{1}=x_{1}\right] P_{X_{2}}\left[X_{2}=y-x_{1}\right]
$$

by independence. Thus

$$
\begin{aligned}
f_{Y}(y) & =\sum_{x_{1}=1}^{y-1}\left(1-\theta_{1}\right)^{x_{1}-1} \theta_{1}\left(1-\theta_{2}\right)^{y-x_{1}-1} \theta_{2}=\frac{\theta_{1} \theta_{2}\left(1-\theta_{2}\right)^{y}}{\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)} \sum_{x_{1}=1}^{y-1}\left(\frac{1-\theta_{1}}{1-\theta_{2}}\right)^{x_{1}} \\
& =\frac{\theta_{1} \theta_{2}\left(1-\theta_{2}\right)^{y}}{\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)}\left(\frac{1-\theta_{1}}{1-\theta_{2}}\right) \frac{1-\left(\frac{1-\theta_{1}}{1-\theta_{2}}\right)^{y-1}}{1-\left(\frac{1-\theta_{1}}{1-\theta_{2}}\right)} \\
& =\theta_{1} \theta_{2}\left(1-\theta_{2}\right)^{y-2} \frac{1-\left(\frac{1-\theta_{1}}{1-\theta_{2}}\right)^{y-1}}{1-\left(\frac{1-\theta_{1}}{1-\theta_{2}}\right)}=\frac{\theta_{1} \theta_{2}}{\theta_{1}-\theta_{2}}\left[\left(1-\theta_{2}\right)^{y-1}-\left(1-\theta_{1}\right)^{y-1}\right]
\end{aligned}
$$

Alternately, using probability generating functions (pgfs), we have that

$$
G_{Y}(t)=G_{X_{1}}(t) G_{X_{2}}(t)=\frac{\theta_{1} t}{1-t\left(1-\theta_{1}\right)} \frac{\theta_{2} t}{1-t\left(1-\theta_{2}\right)}
$$

which, on expansion as a power series in t, yields the same summation as above.
2. By inspection, we have for $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c \exp \left\{-\left|x_{1}\right|\right\}\left|x_{1}\right| \exp \left\{-\frac{x_{1}^{2} x_{2}^{2}}{2}\right\}=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)
$$

where

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\left\{\begin{array}{cl}
\frac{1}{2} e^{-\left|x_{1}\right|} & x_{1} \in \mathbb{R} \backslash\{0\} \\
0 & x_{1}=0
\end{array}\right. \\
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) & =\left\{\begin{array}{cl}
\left(\frac{x_{1}^{2}}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{x_{1}^{2} x_{2}^{2}}{2}\right\} & x_{2} \in \mathbb{R} \text { if } x_{1} \neq 0 \\
0 & x_{2} \in \mathbb{R} \text { if } x_{1}=0
\end{array}\right.
\end{aligned}
$$

Thus $c=1 / \sqrt{8 \pi}$.
3. We have $f_{R}(r)=6 r(1-r)$, for $0<r<1$, and hence

$$
F_{R}(r)=r^{2}(3-2 r) \quad 0<r<1
$$

with the usual cdf behaviour outside of this range.

- Circumference: $X_{1}=2 \pi R$, so $\mathbb{X}_{1}=(0,2 \pi)$, and from first principles, for $x_{1} \in \mathbb{X}_{1}$,

$$
\begin{aligned}
F_{X_{1}}\left(x_{1}\right) & =P_{X_{1}}\left[X_{1} \leq x_{1}\right]=P_{R}\left[2 \pi R \leq x_{1}\right]=P_{R}\left[R \leq x_{1} / 2 \pi\right] \\
& =F_{R}\left(x_{1} / 2 \pi\right)=\frac{3 x_{1}^{2}}{4 \pi^{2}}-\frac{2 x_{1}^{3}}{8 \pi^{3}} \\
\Longrightarrow f_{X_{1}}\left(x_{1}\right) & =\frac{6 x_{1}}{8 \pi^{3}}\left(2 \pi-x_{1}\right) \quad 0<x_{1}<2 \pi
\end{aligned}
$$

- Area: $X_{2}=\pi R^{2}$, so $\mathbb{K}_{2}=(0, \pi)$, and from first principles, for $x_{2} \in \mathbb{K}_{2}$, recalling that f_{R} is only positive when $0<x_{2}<\pi$,

$$
\begin{aligned}
F_{X_{2}}\left(x_{2}\right) & =P_{X_{2}}\left[X_{2} \leq x_{2}\right]=P_{R}\left[\pi R^{2} \leq x_{2}\right]=P_{R}\left[R \leq \sqrt{x_{2} / \pi}\right] \\
& =F_{R}\left(x_{2} / 2 \pi\right)=\frac{3 x_{2}}{\pi}-2\left\{\frac{x_{2}}{\pi}\right\}^{3 / 2} \\
\Longrightarrow f_{X_{2}}\left(x_{2}\right) & =3 \pi^{-3 / 2}\left(\sqrt{\pi}-\sqrt{x_{2}}\right) \quad 0<x_{2}<\pi .
\end{aligned}
$$

Finally, for the joint distribution, we have that $X_{2}=\pi R^{2}=\pi\left(X_{1} /(2 \pi)\right)^{2}=X_{1}^{2} /(4 \pi)$ so the joint pdf is degenerate along the line $x_{2}=x_{1}^{2} /(4 \pi)$, that is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\mathbb{1}_{(0,2 \pi)}\left(x_{1}\right) \frac{6 x_{1}}{8 \pi^{3}}\left(2 \pi-x_{1}\right) \mathbb{1}_{\left\{x_{1}^{2} /(4 \pi)\right\}}\left(x_{2}\right)
$$

4. If $\mathcal{X}^{(2)}=(0,1) \times(0,1)$ is the (joint) range of vector random variable (X, Y). We have

$$
f_{X, Y}(x, y)=c x(1-y) \quad 0<x<1,0<y<1
$$

so that $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ and $\mathbb{X}^{(2)}=\mathbb{X} \times \mathbb{V}$, where \mathbb{K} and \mathbb{V} are the supports of X and Y respectively, and

$$
\begin{equation*}
f_{X}(x)=c_{1} x \quad \text { and } \quad f_{Y}(y)=c_{2}(1-y) \tag{1}
\end{equation*}
$$

for some constants satisfying $c_{1} c_{2}=c$. Hence, the two sufficient conditions for independence (that the joint pdf factorizes into a function of one variable and a function of the other, and the support is a Cartesian product) are satisfied in (1), and X and Y are independent.

Secondly, we must have

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1 \quad \therefore \quad c^{-1}=\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=1
$$

and as

$$
\int_{0}^{1} \int_{0}^{1} x(1-y) d x d y=\left\{\int_{0}^{1} x d x\right\}\left\{\int_{0}^{1}(1-y) d y\right\}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}
$$

we have $c=4$.
Finally, we have $A=\{(x, y): 0<x<y<1\}$, and hence, recalling that the joint density is only non-zero when $x<y$, we first fix a y and integrate $d x$ on the range $(0, y)$, and then integrate $d y$ on the range $(0,1)$, that is

$$
\begin{aligned}
P_{X, Y}[X<Y] & =\iint_{A} f_{X, Y}(x, y) d x d y=\int_{0}^{1}\left\{\int_{0}^{y} 4 x(1-y) d x\right\} d y \\
& =\int_{0}^{1}\left\{\int_{0}^{y} x d x\right\} 4(1-y) d y=\int_{0}^{1} 2 y^{2}(1-y) d y=\left[\frac{2}{3} y^{3}-\frac{1}{2} y^{4}\right]_{0}^{1}=\frac{1}{6}
\end{aligned}
$$

5. First sketch the support of the density; this will make it clear that the boundaries of the support are different for $0<y \leq 1$ and $y>1$.
In this figure

- the gray shaded region is the support of the joint pdf;
- the solid red line indicates the range of integration $d y$ for a fixed x; this range is always $y=1 / x$ to $y=x$;
- the solid blue line indicates the range of integration $d x$ for a fixed $y<1$; this range is always $x=1 / x$ to $x=\infty$.
- the dotted blue line indicates the range of integration $d x$ for a fixed $y>1$; this range is always $x=y$ to $x=\infty$.

(i) The marginal distributions are given by

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{1 / x}^{x} \frac{1}{2 x^{2}} y d y=\frac{1}{2 x^{2}}(\log x-\log (1 / x))=\frac{\log x}{x^{2}} \quad 1 \leq x \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x= \begin{cases}\int_{1 / y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2} & 0 \leq y \leq 1 \\
\int_{y}^{\infty} \frac{1}{2 x^{2} y} d x=\frac{1}{2 y^{2}} & 1 \leq y\end{cases}
\end{aligned}
$$

(ii) Conditionals:

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\left\{\begin{array}{cl}
\frac{1}{x^{2} y} & 1 / y \leq x \text { if } 0 \leq y \leq 1 \\
\frac{y}{x^{2}} & y \leq x \text { if } 1 \leq y
\end{array}\right. \\
& f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{1}{2 y \log x} \quad 1 / x \leq y \leq x \text { if } x \geq 1
\end{aligned}
$$

(iii) Marginal expectation of Y;

$$
\mathbb{E}_{Y}[Y]=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{1} \frac{y}{2} d y+\int_{1}^{\infty} \frac{1}{2 y} d y=\infty
$$

as the second integral is divergent.
6. (i) We set

$$
\begin{aligned}
& U=X / Y \\
& V=-\log (X Y)
\end{aligned} \Longleftrightarrow \begin{aligned}
& X=U^{1 / 2} e^{-V / 2} \\
& Y=U^{-1 / 2} e^{-V / 2}
\end{aligned}
$$

note that, as X and Y lie in $(0,1)$ we have $X Y<X / Y$ and $X Y<Y / X$, giving constraints $e^{-V}<U$ and $e^{-V}<1 / U$, so that $0<e^{-V}<\min \{U, 1 / U\}$. The Jacobian of the transformation is

$$
|J(u, v)|=\left|\begin{array}{cc}
\frac{u^{-1 / 2} e^{-v / 2}}{2} & -\frac{u^{1 / 2} e^{-v / 2}}{2} \\
-\frac{u^{-3 / 2} e^{-v / 2}}{2} & -\frac{u^{-1 / 2} e^{-v / 2}}{2}
\end{array}\right|=u^{-1} e^{-v} / 2 .
$$

Hence

$$
f_{U, V}(u, v)=u^{-1} e^{-v} / 2 \quad 0<e^{-v}<\min \{u, 1 / u\}, u>0
$$

The corresponding marginals are given below: let $g(y)=-\log (\min \{u, 1 / u\})$, then

$$
\begin{aligned}
& f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{g(y)}^{\infty} \frac{e^{-v}}{2 u} d v=\left[-\frac{e^{-v}}{2 u}\right]_{g(y)}^{\infty}=\frac{\min \{u, 1 / u\}}{2 u} \quad u>0 \\
& f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d u=\int_{e^{-v}}^{e^{v}} \frac{e^{-v}}{2 u} d u=\left[\frac{\log u}{2} e^{-v}\right]_{e^{-v}}^{e^{v}}=v e^{-v} \quad v>0
\end{aligned}
$$

(ii) Now let

$$
\begin{aligned}
& V=X+Y \\
& Z=X-Y
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& X=\frac{V+Z}{2} \\
& Y=\frac{V-Z}{2}
\end{aligned}
$$

and the Jacobian of the transformation is $1 / 2$. The transformed variables take values on the square A in the (V, Z) plane with corners at $(0,0),(1,1),(2,0)$ and $(1,-1)$ bounded by the lines $z=-v, z=2-v, z=v$ and $z=v-2$. Then

$$
f_{V, Z}(v, z)=\frac{1}{2} \quad(v, z) \in A
$$

and zero otherwise (sketch the square A). Hence, integrating in horizontal strips in the (V, Z) plane,

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{V, Z}(v, z) d v= \begin{cases}\int_{-z}^{2+z} \frac{1}{2} d v=1+z & -1<z \leq 0 \\ \int_{z}^{2-z} \frac{1}{2} d v=1-z & 0<z<1\end{cases}
$$

7. (a) Random variable $\mathbb{1}_{B}(X)$ takes values on the set $\{0,1\}$, with

$$
P_{\mathbb{1}_{B}(X)}\left[\mathbb{1}_{B}(X)=1\right]=P_{X}[X \in B]=\theta_{B}
$$

say, so $\mathbb{1}_{B}(X) \sim \operatorname{Bernoulli}\left(\theta_{B}\right)$, with expectation, from the formula sheet, θ_{B}
(b) Let $\mathbb{1}_{B}(\mathbf{X})$ be the scalar indicator random variable associated with the event $\mathbf{X} \in B$. Then from above, we have that

$$
\mathbb{E}_{\mathbb{1}_{B}(\mathbf{X})}\left[\mathbb{1}_{B}(\mathbf{X})\right]=P_{\mathbf{X}}[\mathbf{X} \in B]
$$

which indicates that we can construct the approximation

$$
\widehat{\mathbb{E}}_{\mathbb{1}_{B}(\mathbf{X})}\left[\mathbb{1}_{B}(\mathbf{X})\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{B}\left(\mathbf{x}_{i}\right)
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are an independent sample from the specified Normal distribution. The following R code implements this:
library (MASS)
$\mathrm{N}<-10000$
Sigma<-matrix (c (1, 0.2,-0.5, 0.2,2.0,-0.1,-0.5,-0.1,2.0) , 3, 3, byrow=T)
set.seed(101)
for (irep in 1:5) \{
X<-mvrnorm ($N, m u=c(0,0,0)$, Sigma)
IndX<-X[,1]+X[,3]-(X[,1]^2+X[,2]~2) >0
E<-sum(IndX)/N
print(format(E, nsmall=4))
\}
and yields the results
[1] 0.1513
[1] 0.1433
[1] 0.1475
[1] 0.1529
[1] 0.1484
By using a very large N, we can discover that the true value is 0.1468 to four decimal places.

