MATH 556 - EXERCISES 3 : Solutions

1. Using the Chebychev Lemma with $h(x)=e^{t x}$ and $c=e^{a t}$, for $t>0$,

$$
P_{X}[X \geq a]=P_{X}[t X \geq a t]=P_{X}[\exp \{t X\} \geq \exp \{a t\}] \leq \frac{\mathbb{E}_{X}\left[e^{t X}\right]}{e^{a t}}=\frac{M_{X}(t)}{e^{a t}}
$$

provided $t<h$ also. Using similar methods,

$$
P_{X}[X \leq a] \leq e^{-a t} M_{X}(t) \quad \text { for }-h<t<0
$$

For the second result, we have $K_{X}(t)=\log M_{X}(t)$, hence

$$
K_{X}^{(1)}(t)=\frac{d}{d s}\left\{K_{X}(t)\right\}_{s=t}=\frac{d}{d s}\left\{\log M_{X}(t)\right\}_{s=t}=\frac{M_{X}^{(1)}(t)}{M_{X}(t)} \Longrightarrow K_{X}^{(1)}(0)=\frac{M_{X}^{(1)}(0)}{M_{X}(0)}=\mathbb{E}_{X}[X]
$$

as $M_{X}(0)=1$. Similarly

$$
K_{X}^{(2)}(t)=\frac{M_{X}(t) M_{X}^{(2)}(t)-\left\{M_{X}^{(1)}(t)\right\}^{2}}{\left\{M_{X}(t)\right\}^{2}}
$$

and hence

$$
K_{X}^{(2)}(0)=\frac{M_{X}(0) M_{X}^{(2)}(0)-\left\{M_{X}^{(1)}(0)\right\}^{2}}{\left\{M_{X}(0)\right\}^{2}}=\mathbb{E}_{X}\left[X^{2}\right]-\left\{\mathbb{E}_{X}[X]\right\}^{2}
$$

2. (a) From first principles, for $y>0$,

$$
P[Y \leq y]=P_{X}\left[X^{2} \leq y\right]=P_{X}[-\sqrt{y} \leq X \leq \sqrt{y}]=\Phi(\sqrt{y}-\mu)-\Phi(-\sqrt{y}-\mu)
$$

therefore for $y>0$,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2 \sqrt{y}}(\phi(\sqrt{y}-\mu)+\phi(-\sqrt{y}-\mu)) \\
& =\frac{1}{2 \sqrt{2 \pi}} \frac{1}{\sqrt{y}}\left(\exp \left\{-\frac{1}{2}(\sqrt{y}-\mu)^{2}\right\}+\exp \left\{-\frac{1}{2}(-\sqrt{y}-\mu)^{2}\right\}\right) \\
& =\frac{1}{2 \sqrt{2 \pi}} \frac{1}{\sqrt{y}} \exp \left\{-\frac{1}{2}\left(y+\mu^{2}\right)\right\}(\exp \{\sqrt{y} \mu\}+\exp \{-\sqrt{y} \mu\})
\end{aligned}
$$

Let $\lambda=\mu^{2}$. We rewrite the density

$$
f_{Y}(y)=\frac{1}{2 \sqrt{2 \pi}} \frac{1}{\sqrt{y}} \exp \left\{-\frac{1}{2}(y+\lambda)\right\}(\exp \{\sqrt{y \lambda}\}+\exp \{-\sqrt{y \lambda}\})
$$

Using the exponential series expansion, we have that

$$
\begin{aligned}
\exp \{\sqrt{y \lambda}\}+\exp \{-\sqrt{y \lambda}\} & =\sum_{j=0}^{\infty} \frac{1}{j!} y^{j / 2} \lambda^{j / 2}-\sum_{j=0}^{\infty} \frac{1}{j!}(-1)^{j} y^{j / 2} \lambda^{j / 2} \\
& =2 \sum_{j=0}^{\infty} \frac{(\lambda y)^{j}}{(2 j)!}
\end{aligned}
$$

Therefore the density is

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} \exp \left\{-\frac{1}{2}(y+\lambda)\right\} \sum_{j=0}^{\infty} \frac{(\lambda y)^{j}}{(2 j)!}
$$

Rewriting this, we have for $y>0$,

$$
\begin{aligned}
f_{Y}(y) & =\exp \left\{-\frac{\lambda}{2}\right\} \sum_{j=0}^{\infty} \frac{(\lambda y)^{j}}{(2 j)!} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} \exp \left\{-\frac{y}{2}\right\} \\
& =\exp \left\{-\frac{\lambda}{2}\right\} \sum_{j=0}^{\infty} \frac{\lambda^{j}}{(2 j)!} \frac{1}{\sqrt{2 \pi}} y^{j-1 / 2} \exp \left\{-\frac{y}{2}\right\} \\
& =\exp \left\{-\frac{\lambda}{2}\right\} \sum_{j=0}^{\infty} \frac{(\lambda / 2)^{j}}{(2 j)!} \frac{2^{j+1 / 2}}{\sqrt{\pi}} y^{j-1 / 2} \exp \left\{-\frac{y}{2}\right\} \\
& =\exp \left\{-\frac{\lambda}{2}\right\} \sum_{j=0}^{\infty} \frac{(\lambda / 2)^{j}}{\Gamma(2 j+1)} \frac{2^{j+1 / 2}}{\sqrt{\pi}} y^{j-1 / 2} \exp \left\{-\frac{y}{2}\right\}
\end{aligned}
$$

Note that

$$
\Gamma(2 j+1)=(2 j)!=(2 j)(2 j-1)(2 j-2) \ldots 3 \cdot 2 \cdot 1=2^{2 j} j(j-1 / 2)(j-1) \ldots(3 / 2)(2 / 2)(1 / 2) .
$$

Now, $Z_{m} \sim \chi_{m}^{2} \equiv \operatorname{Gamma}(m / 2,1 / 2)$, we have

$$
f_{Z_{m}}(z)=\frac{(1 / 2)^{m / 2}}{\Gamma(m / 2)} z^{m / 2-1} \exp \{-z / 2\} \quad z>0
$$

so if $m=2 j+k$,

$$
f_{Z_{2 j+k}}(z)=\frac{(1 / 2)^{j+k / 2}}{\Gamma(j+k / 2)} z^{j+k / 2-1} \exp \{-z / 2\} \quad z>0
$$

Therefore we have after some cancellation,

$$
f_{Y}(y)=e^{-\lambda / 2} \sum_{j=0}^{\infty} \frac{(\lambda / 2)^{j}}{j!} f_{Z_{2 j+k}}(y) \quad y>0
$$

with $k=1$.
(b) We have for $\varphi_{Y}(t)$, from the definition

$$
\varphi_{Y}(t)=\mathbb{E}_{Y}\left[e^{i t Y}\right]=\mathbb{E}_{X}\left[e^{i t X^{2}}\right]=\int_{-\infty}^{\infty} e^{i t x^{2}} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(x-\mu)^{2}\right\} d x
$$

We may complete the square in the integral to obtain

$$
\varphi_{Y}(t)=\exp \left\{\frac{\mu^{2} i t}{1-2 i t}\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(1-2 i t)}{2}\left(x-\frac{\mu}{(1-2 i t)}\right)^{2}\right\} d x
$$

and thus, integrating the normal kernel,

$$
\varphi_{Y}(t)=\frac{1}{\sqrt{1-2 i t}} \exp \left\{\frac{\mu^{2} i t}{1-2 i t}\right\}
$$

(here as the integral is wrt x, we may just treat the quantity i as if it were a real quantity during the manipulation).
(c) We have

$$
\mathcal{L}_{Y}(t)=\varphi_{Y}(i t)=\frac{1}{\sqrt{1+2 t}} \exp \left\{-\frac{\mu^{2} t}{1+2 t}\right\}
$$

(d) In this case the mgf exists, and

$$
M_{Y}(t)=\varphi_{Y}(-i t)=\frac{1}{\sqrt{1-2 t}} \exp \left\{\frac{\mu^{2} t}{1-2 t}\right\}
$$

so

$$
K_{Y}(t)=-\frac{1}{2} \log (1-2 t)+\frac{\mu^{2} t}{1-2 t} .
$$

Thus

$$
\begin{aligned}
\mathbb{E}_{Y}[Y]=\frac{d}{d t}\left\{K_{Y}(t)\right\}_{t=0} & =\left\{\frac{1}{1-2 t}+\frac{(1-2 t) \mu^{2}+2 \mu^{2} t}{(1-2 t)^{2}}\right\}_{t=0}=\left\{\frac{1}{1-2 t}+\frac{\mu^{2}}{(1-2 t)^{2}}\right\}_{t=0} \\
& =1+\mu^{2}
\end{aligned}
$$

and

$$
\operatorname{Var}_{Y}[Y]=\frac{d^{2}}{d t^{2}}\left\{K_{Y}(t)\right\}_{t=0}=\left\{\frac{2}{(1-2 t)^{2}}+\frac{4 \mu^{2}}{(1-2 t)^{3}}\right\}_{t=0}=2+4 \mu^{2}
$$

(e) Using mgfs, we have for integers $\nu_{i}, i=1, \ldots, n$,

$$
M_{S}(t)=\left(\frac{1}{1-2 t}\right)^{\nu / 2} \exp \left\{\frac{\lambda t}{1-2 t}\right\}
$$

where

$$
\nu=\sum_{i=1}^{n} \nu_{i} \quad \lambda=\sum_{i=1}^{n} \lambda_{i}
$$

To see this, note that if $n=2$ with $\nu_{1}=\nu_{2}=1$, but $\lambda_{1}=\mu_{1}^{2}$ and $\lambda_{2}=\mu_{2}^{2}$, we have

$$
\begin{aligned}
M_{S}(t)=M_{Y_{1}}(t) M_{Y_{2}}(t) & =\frac{1}{\sqrt{1-2 t}} \exp \left\{\frac{\lambda_{1} t}{1-2 t}\right\} \frac{1}{\sqrt{1-2 t}} \exp \left\{\frac{\lambda_{2} t}{1-2 t}\right\} \\
& =\left(\frac{1}{\sqrt{1-2 t}}\right)^{2} \exp \left\{\frac{\left(\lambda_{1}+\lambda_{2}\right) t}{1-2 t}\right\}
\end{aligned}
$$

We can use this as a recursion to generate the mgf for any integer ν_{1}. Thus S has a noncentral chi-square distribution with ν degrees of freedom, and noncentrality λ.
3. Differentiating under the integral wrt t, we have

$$
\frac{d^{r}}{d t^{r}} \mathcal{L}_{X}(t)=\int\left\{\frac{d^{r}}{d t^{r}} e^{-t x}\right\} d F_{X}(x)=\int(-x)^{r} e^{-t x} d F_{X}(x)=(-1)^{r} \int x^{r} e^{-t x} d F_{X}(x)
$$

and the result follows multiplying both sides by $(-1)^{r}$, and recalling that the variable is nonnegative.
For the second result, we have, on integrating by parts,

$$
\begin{aligned}
\mathcal{L}_{X}(t) & =\int_{0}^{\infty} e^{-t x} f_{X}(x) d x \\
& =\left[e^{-t x} F_{X}(x)\right]_{0}^{\infty}+t \int_{0}^{\infty} e^{-t x} F_{X}(x) d x=t \int_{0}^{\infty} e^{-t x} F_{X}(x) d x
\end{aligned}
$$

4. Using the mgf of the Gamma from the formula sheet, the mgf of Y must be

$$
\left(\frac{\beta_{1}}{\beta_{1}-t}\right)^{\alpha_{1}}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{2}}
$$

thus the characteristic function

$$
\left(\frac{\beta_{1}}{\beta_{1}-i t}\right)^{\alpha_{1}}\left(\frac{\beta_{2}}{\beta_{2}+i t}\right)^{\alpha_{2}}
$$

In principle we could invert this cf using the inversion formula for continuous rvs. However, the density is not straightforward. The difference of two Gamma random variables has the Variance Gamma distribution.
5. We have by definition that

$$
\varphi_{k}(t)=\int e^{i t x} d F_{k}(x)
$$

say, for some cdf F_{k}. Clearly $\varphi(t)$ is finite as the c_{k} are summable, and the individual cf integrals are finite. We have, because of this, by exchanging the order of summation and integration,

$$
\varphi(t)=\sum_{k=1}^{n} c_{k} \varphi_{k}(t)=\sum_{k=1}^{n}\left\{c_{k} \int e^{i t x} d F_{k}(x)\right\}=\int e^{i t x}\left\{\sum_{k=1}^{n} c_{k} d F_{k}(x)\right\}=\int e^{i t x} d\left\{\sum_{k=1}^{n} c_{k} F_{k}(x)\right\} .
$$

The function

$$
F_{X}(x)=\sum_{k=1}^{n} c_{k} F_{k}(x)
$$

is a valid cdf; this is easily verified by checking the standard properties, as the $c_{k} \mathrm{~s}$ sum to one. Therefore $\varphi(t)$ is the cf corresponding to F_{X}. The distribution characterized by F_{X} and $\varphi(t)$ is termed a finite mixture distribution.

For the limiting case, consider the limiting case function $F_{X}(x)$

$$
F_{X}(x)=\sum_{k=1}^{\infty} c_{k} F_{k}(x)
$$

for any fixed x. The right hand side can be considered as the probability of a disjoint union of the events

$$
(X \leq x \cap Z=k) \quad k=1,2, \ldots
$$

where Z is a discrete random variable on the positive integers, with probabilities c_{1}, c_{2}, \ldots attached to $1,2, \ldots$. Now by standard limit results for event sequences

$$
\bigcup_{k=1}^{\infty}(X \leq x \cap Z=k) \equiv(X \leq x)
$$

and thus $F_{X}(x)$ is a well-defined cdf. Hence the limiting case as $n \longrightarrow \infty$ provides no difficulty.
6. By inspection of the formula sheet, and the realization that if the mgf $M(t)$ exists for $|t|<h$, then $\varphi(t)=M(i t)$, we may deduce that $\varphi_{1}(t)$ is the cf of the normal density with mean zero and variance 8. For $\varphi_{2}(t)$, we note that

$$
\limsup _{t \longrightarrow \pm \infty}\left|\varphi_{2}(t)\right|=1
$$

so the distribution is discrete; we must find mass function $f_{2}(x)$ with support \mathbb{K} such that

$$
\sum_{x \in \mathfrak{K}} e^{i x t} f_{2}(x)=(3+\cos (t)+\cos (2 t)) / 5
$$

Now, note that $e^{i t x}=\cos (t x)+i \sin (t x)$, so we can deduce that $x=0,1,2$ must be in \mathcal{X}. Note also that the cf is entirely real, and

$$
\cos (t x)=\frac{e^{i t x}+e^{-i t x}}{2}
$$

and so

$$
\cos (t)=\frac{e^{i t}+e^{-i t}}{2} \quad \cos (2 t)=\frac{e^{i t 2}+e^{-i t 2}}{2}
$$

Hence $f_{2}(x)$ can be deduced to be of the form

$$
f_{2}(x)=\left\{\begin{array}{cc}
1 / 10 & x=-2 \\
1 / 10 & x=-1 \\
6 / 10 & x=0 \\
1 / 10 & x=1 \\
1 / 10 & x=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence, using the previous result, the distribution is an equal mixture of the two components,

$$
F(x)=\frac{1}{2} \Phi(x / \sqrt{8})+\frac{1}{2} F_{2}(x) .
$$

7. As $X_{2}=X_{1}+\left(X_{2}-X_{1}\right)$, we have by the independence statements

$$
\varphi_{X_{2}}(t)=\varphi_{X_{1}}(t) \varphi_{X_{2}-X_{1}}(t)=\varphi_{X_{1}}(t) \varphi_{X_{2}}(t) \varphi_{X_{1}}(-t)=\varphi_{X_{2}}(t)\left|\varphi_{X_{1}}(t)\right|^{2}
$$

with the final step being an elementary property of complex numbers. Now $\varphi_{X_{2}}(0)=1$ and thus by continuity $\varphi_{X_{2}}(t) \neq 0$ for t at least in a neighbourhood of zero. Thus, equating the two sides, we must have $\left|\varphi_{X_{1}}(t)\right|^{2}=1$ for all t. Thus as t varies, $\varphi_{X_{1}}(t)$ is always a complex valued quantity that lies on the unit circle in the complex plane. Hence we must have

$$
\varphi_{X_{1}}(t)=e^{i t c}
$$

for some c, and X_{1} is degenerate at c.
8. First, note that

$$
M_{X}(t)=e^{-t} M_{Z}(t)
$$

where

$$
M_{Z}(t)=\frac{9}{(3+2 t)^{2}}=\frac{1}{(1+(2 / 3) t)^{2}}
$$

and, by linear transformation results for $\mathrm{mgfs}, X \stackrel{d}{=} Z-1$. Hence

$$
\mathbb{E}_{X}\left[X^{r}\right]=\mathbb{E}_{Z}\left[(Z-1)^{r}\right]=\sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} \mathbb{E}_{Z}\left[Z^{j}\right]
$$

We have that

$$
M_{Z}^{(j)}(t)=(-2)(-3) \ldots(-2-j+1) \frac{(2 / 3)^{j}}{(1+(2 / 3) t)^{2+j}}=(-1)^{j}(j+1)!\frac{(2 / 3)^{j}}{(1+(2 / 3) t)^{2+j}}
$$

so that

$$
\mathbb{E}_{Z}\left[Z^{j}\right]=M_{Z}^{(j)}(0)=(-1)^{j}(j+1)!(2 / 3)^{j}
$$

which we may substitute in above to get

$$
\mathbb{E}_{X}\left[X^{r}\right]=\mathbb{E}_{Z}\left[(Z-1)^{r}\right]=(-1)^{r} \sum_{j=0}^{r}\binom{r}{j}(j+1)!(2 / 3)^{j}
$$

9. From the formula sheet we have

$$
M_{X}(t)=\left(1-\theta+\theta e^{t}\right)^{n}
$$

and thus

$$
K_{X}(t)=n \log \left(1-\theta+\theta e^{t}\right) .
$$

Using the linear transformation result,

$$
M_{Z_{n}}(t)=e^{b_{n} t} M_{X}\left(a_{n} t\right)
$$

where

$$
a_{n}=\frac{1}{\sqrt{n \theta(1-\theta)}} \quad b_{n}=-\frac{n \theta}{\sqrt{n \theta(1-\theta)}}=-n \theta a_{n}
$$

we have

$$
K_{Z_{n}}(t)=-n \theta a_{n} t+K_{X}\left(a_{n} t\right)=-n \theta a_{n} t+n \log \left(1-\theta+\theta e^{a_{n} t}\right)
$$

Now if

$$
g_{n}(t)=e^{a_{n} t}-1=a_{n} t+\frac{1}{2} a_{n}^{2} t^{2}+\frac{1}{6} a_{n}^{3} t^{3}+\cdots
$$

we have up to terms in t^{3}

$$
\begin{aligned}
n \log \left\{\left(1+\theta g_{n}(t)\right)\right\}= & n \theta g_{n}(t)-n \theta^{2}\left\{g_{n}(t)\right\}^{2} / 2+n \theta^{3}\left\{g_{n}(t)\right\}^{3} / 6 \cdots \\
= & n \theta\left(a_{n} t+\frac{1}{2} a_{n}^{2} t^{2}+\frac{1}{6} a_{n}^{3} t^{3}+\cdots\right) \\
& -\frac{n \theta^{2}}{2}\left(a_{n}^{2} t^{2}+a_{n}^{3} t^{3}+\cdots\right) \\
& +\frac{n \theta^{3}}{3}\left(a_{n}^{3} t^{3}+\cdots\right)+\cdots
\end{aligned}
$$

Therefore, from the earlier expression, the term in t cancels, and we are left with

$$
\begin{aligned}
K_{Z_{n}}(t) & =\frac{n \theta(1-\theta)}{2} a_{n}^{2} t^{2}+n \theta\left(\frac{1}{6}-\frac{\theta}{2}+\frac{\theta^{2}}{3}\right) a_{n}^{3} t^{3}+\cdots \\
& =\frac{t^{2}}{2}+\frac{1}{n^{1 / 2}} \frac{\theta\left(1-3 \theta+2 \theta^{2}\right)}{6(\theta(1-\theta))^{3 / 2}} t^{3}+\cdots
\end{aligned}
$$

The truncation after the second term leads to an approximation which has order $n a_{n}^{4}$; this is a constant times $n n^{-2}=n^{-1}$. Hence we may equivalently write

$$
K_{Z_{n}}(t)=\frac{t^{2}}{2}+\frac{1}{n^{1 / 2}} \frac{\theta\left(1-3 \theta+2 \theta^{2}\right)}{6(\theta(1-\theta))^{3 / 2}} t^{3}+\mathrm{O}\left(n^{-1}\right)
$$

or

$$
K_{Z_{n}}(t)=\frac{t^{2}}{2}+\frac{1}{n^{1 / 2}} \frac{\theta\left(1-3 \theta+2 \theta^{2}\right)}{6(\theta(1-\theta))^{3 / 2}} t^{3}+\mathrm{o}\left(n^{-1 / 2}\right)
$$

as $n \longrightarrow \infty$.

