MATH 556 - EXERCISES 7

Not for Assessment.

1. Let Y_{n} and Z_{n} correspond to the maximum and minimum order statistics derived from random sample X_{1}, \ldots, X_{n} from population with cdf F_{X}.
(a) Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0,1)$. Find the cdfs of Y_{n} and Z_{n}, and the limiting distributions as $n \longrightarrow \infty$.
(b) Suppose X_{1}, \ldots, X_{n} have cdf

$$
F_{X}(x)=1-x^{-1} \quad x \geq 1
$$

Find the cdfs of Z_{n} and $U_{n}=Z_{n}^{n}$, and the limiting distributions of Z_{n} and U_{n} as $n \longrightarrow \infty$.
(c) Suppose X_{1}, \ldots, X_{n} have cdf

$$
F_{X}(x)=\frac{1}{1+e^{-x}} \quad x \in \mathbb{R}
$$

Find the cdfs of Y_{n} and $U_{n}=Y_{n}-\log n$ and the limiting distributions of Y_{n} and U_{n} as $n \longrightarrow \infty$.
(d) Suppose X_{1}, \ldots, X_{n} have cdf

$$
F_{X}(x)=1-\frac{1}{1+\lambda x} \quad x>0
$$

Find the cdfs of Y_{n} and Z_{n}, and the limiting distributions as $n \longrightarrow \infty$. Find also the cdfs of $U_{n}=Y_{n} / n$ and $V_{n}=n Z_{n}$, and the limiting distributions of U_{n} and V_{n} as $n \longrightarrow \infty$.
2. Using the Central Limit Theorem, construct Normal approximations to probability distribution of a random variable X having
(a) a Binomial distribution, $X \sim \operatorname{Binomial}(n, \theta)$
(b) a Poisson distribution, $X \sim \operatorname{Poisson}(\lambda)$
(c) a Negative Binomial distribution, $X \sim \operatorname{Neg} \operatorname{Binomial}(n, \theta)$
(d) a Gamma distribution, $X \sim \operatorname{Gamma}(\alpha, \beta)$
3. Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\lambda)$ are independent random variables. Let $M_{n}=\bar{X}_{n}$. Show that $M_{n} \xrightarrow{p} \lambda$ as $n \longrightarrow \infty$. If random variable T_{n} is defined by $T_{n}=e^{-M_{n}}$, show that $T_{n} \xrightarrow{p} e^{-\lambda}$, and find an approximation to the probability distribution of T_{n} as $n \longrightarrow \infty$.
4. For the following sequences of random variables, $\left\{X_{n}\right\}$, decide whether the the sequence converges in mean-square (r th mean for $r=2$) or in probability as $n \longrightarrow \infty$.
(a) $X_{n}= \begin{cases}1 & \text { with prob. } 1 / n \\ 2 & \text { with prob. } 1-1 / n\end{cases}$
(b) $X_{n}= \begin{cases}n^{2} & \text { with prob. } 1 / n \\ 1 & \text { with prob. } 1-1 / n\end{cases}$
(c) $X_{n}= \begin{cases}n & \text { with prob. } 1 / \log n \\ 0 & \text { with prob. } 1-1 / \log n\end{cases}$

Let $\left\{E_{n}\right\}$ be a sequence of events in sample space Ω. Then

$$
E^{(S)}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}
$$

is the limsup event of the infinite sequence; event $E^{(S)}$ occurs if and only if

- for all $n \geq 1$, there exists an $m \geq n$ such that E_{m} occurs.
- infinitely many of the E_{n} occur.

Similarly, let

$$
E^{(I)}=\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} E_{m}
$$

is the liminf event of the infinite sequence; event $E^{(I)}$ occurs if and only if

- there exists $n \geq 1$, such that for all $m \geq n, E_{m}$ occurs.
- only finitely many of the E_{n} do not occur.

The Borel-Cantelli Lemma: Let $\left\{E_{n}\right\}$ be a sequence of events in sample space Ω. Then
(i) If

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty, \quad \Longrightarrow \quad P\left(E^{(S)}\right)=0
$$

that is,

$$
P\left[E_{n} \text { occurs infinitely often }\right]=0 .
$$

(ii) If the events $\left\{E_{n}\right\}$ are independent

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right)=\infty \quad \Longrightarrow \quad P\left(E^{(S)}\right)=1
$$

that is, $P\left[E_{n}\right.$ occurs infinitely often $]=1$.
Note: This result is useful for assessing almost sure convergence. For a sequence of random variables $\left\{X_{n}\right\}$ and limit random variable X, suppose, for $\epsilon>0$, that $A_{n}(\epsilon)$ is the event

$$
A_{n}(\epsilon) \equiv\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \geq \epsilon\right\}
$$

The BC Lemma says that for arbitrary $\epsilon>0$,
(i) if

$$
\sum_{n=1}^{\infty} P\left(A_{n}(\epsilon)\right)=\sum_{n=1}^{\infty} P\left[\left|X_{n}-X\right| \geq \epsilon\right]<\infty
$$

then

$$
X_{n} \xrightarrow{\text { a.s. }} X
$$

(ii) if

$$
\sum_{n=1}^{\infty} P\left(A_{n}(\epsilon)\right)=\sum_{n=1}^{\infty} P\left[\left|X_{n}-X\right| \geq \epsilon\right]=\infty
$$

with the X_{n} independent then

$$
X_{n} \xrightarrow{\text { a.s. }} X
$$

Proof

(i) Note first that

$$
\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty \quad \Longrightarrow \quad \lim _{n \longrightarrow \infty} \sum_{m=n}^{\infty} P\left(E_{m}\right)=0
$$

because if the sum on the left-hand side is finite, then the tail-sums on the right-hand side tend to zero as $n \longrightarrow \infty$. But for every $n \geq 1$,

$$
\begin{equation*}
E^{(S)}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m} \subseteq \bigcup_{m=n}^{\infty} E_{m} \quad \therefore \quad P\left(E^{(S)}\right) \leq P\left(\bigcup_{m=n}^{\infty} E_{m}\right) \leq \sum_{m=n}^{\infty} P\left(E_{m}\right) \tag{1}
\end{equation*}
$$

Thus, taking limits as $n \longrightarrow \infty$, we have that

$$
P\left(E^{(S)}\right) \leq \lim _{n \longrightarrow \infty} \sum_{m=n}^{\infty} P\left(E_{m}\right)=0 .
$$

(ii) Consider $N \geq n$, and the union of events

$$
E_{n, N}=\bigcup_{m=n}^{N} E_{m}
$$

$E_{n, N}$ corresponds to the collection of sample outcomes that are in at least one of the collections corresponding to events E_{n}, \ldots, E_{N}. Therefore, $E_{n, N}^{\prime}$ is the collection of sample outcomes in Ω that are not in any of the collections corresponding to events E_{n}, \ldots, E_{N}, and hence

$$
\begin{equation*}
E_{n, N}^{\prime}=\bigcap_{m=n}^{N} E_{m}^{\prime} \tag{2}
\end{equation*}
$$

Now,

$$
E_{n, N} \subseteq \bigcup_{m=n}^{\infty} E_{m} \quad \Longrightarrow \quad P\left(E_{n, N}\right) \leq P\left(\bigcup_{m=n}^{\infty} E_{m}\right)
$$

and hence, by assumption and independence,

$$
\begin{aligned}
1-P\left(\bigcup_{m=n}^{\infty} E_{m}\right) & \leq 1-P\left(\bigcup_{m=n}^{N} E_{m}\right)=1-P\left(E_{n, N}\right)=P\left(E_{n, N}^{\prime}\right)=P\left(\bigcap_{m=n}^{N} E_{m}^{\prime}\right)=\prod_{m=n}^{N} P\left(E_{m}^{\prime}\right) \\
& =\prod_{m=n}^{N}\left(1-P\left(E_{m}\right)\right) \leq \exp \left\{-\sum_{m=n}^{N} P\left(E_{m}\right)\right\},
\end{aligned}
$$

as $1-x \leq \exp \{-x\}$ for $0<x<1$. Now, taking the limit of both sides as $N \longrightarrow \infty$, for fixed n,

$$
1-P\left(\bigcup_{m=n}^{\infty} E_{m}\right) \leq \lim _{N \longrightarrow \infty} \exp \left\{-\sum_{m=n}^{N} P\left(E_{m}\right)\right\}=0
$$

as, by assumption $\sum_{n=1}^{\infty} P\left(E_{n}\right)=\infty$. Thus, for each n, we have that

$$
P\left(\bigcup_{m=n}^{\infty} E_{m}\right)=1 \quad \therefore \quad \lim _{n \longrightarrow \infty} P\left(\bigcup_{m=n}^{\infty} E_{m}\right)=1 .
$$

But the sequence of events $\left\{A_{n}\right\}$ defined for $n \geq 1$ by

$$
A_{n}=\bigcup_{m=n}^{\infty} E_{m}
$$

is monotone non-increasing, and hence, by continuity,

$$
\begin{equation*}
P\left(\lim _{n \longrightarrow \infty} A_{n}\right)=\lim _{n \longrightarrow \infty} P\left(A_{n}\right) . \tag{3}
\end{equation*}
$$

From (4), we have that the right hand side of equation (5) is equal to 1 , and, by definition,

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m} . \tag{4}
\end{equation*}
$$

Hence, combining (2), (3) and (4) we have finally that

$$
P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}\right)=1 \quad \Longrightarrow \quad P\left(E^{(S)}\right)=1
$$

Interpretation and Implications

The Borel-Cantelli result is concerned with the calculation of the probability of the limsup event $E^{(S)}$ occurring for general infinite sequences of events $\left\{E_{n}\right\}$. From previous discussion, we have seen that $E^{(S)}$ corresponds to the collection of sample outcomes in Ω that are in infinitely many of the E_{n} collections. Alternately, $E^{(S)}$ occurs if and only if infinitely many $\left\{E_{n}\right\}$ occur. The Borel-Cantelli result tells us conditions under which $P\left(E^{(S)}\right)=0$ or 1 .
EXAMPLE: Consider the event E defined by
" E occurs" $=$ "run of 100^{100} Heads occurs in an infinite sequence of independent coin tosses"
We wish to calculate $P(E)$, and proceed as follows; consider the infinite sequence of events $\left\{E_{n}\right\}$ defined by

$$
\text { " } E_{n} \text { occurs" }=\text { "run of } 100^{100} \text { Heads occurs in the } n \text {th block of } 100^{100} \text { coin tosses" }
$$

Then $\left\{E_{n}\right\}$ are independent events, and

$$
P\left(E_{n}\right)=\frac{1}{2^{100^{100}}}>0 \Longrightarrow \sum_{n=1}^{\infty} P\left(E_{n}\right)=\infty,
$$

and hence by part (b) of the Borel-Cantelli result,

$$
P\left(E^{(S)}\right)=P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_{m}\right)=1
$$

so that the probability that infinitely many of the $\left\{E_{n}\right\}$ occur is 1 . But, crucially,

$$
E^{(S)} \subseteq E \Longrightarrow P(E)=1
$$

Therefore the probability that E occurs, that is that a run of 100^{100} Heads occurs in an infinite sequence of independent coin tosses, is 1 .

EXERCISES

1.* Consider the sequence of random variables defined for $n=1,2,3, \ldots$ by

$$
X_{n}=\mathbb{1}_{\left[0, n^{-1}\right)}\left(U_{n}\right)
$$

where U_{1}, U_{2}, \ldots are a sequence of independent $\operatorname{Uniform}(0,1)$ random variables, and $\mathbb{1}_{A}$ is the indicator function for set A

$$
\mathbb{1}_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}
$$

Does the sequence $\left\{X_{n}\right\}$ converge
(a) almost surely?
(b) in $r^{\text {th }}$ mean for $r=1$?

Hint: Consider the events $A_{n} \equiv\left(X_{n} \neq 0\right)$ for $n=1,2, \ldots$.
2.* Let $Z \sim \operatorname{Uniform}(0,1)$, and define a sequence of random variables $\left\{X_{n}\right\}$ by

$$
X_{n}=n \mathbb{1}_{\left[1-n^{-1}, 1\right)}(Z) \quad n=1,2, \ldots
$$

where, for set A

$$
\mathbb{1}_{A}(Z)= \begin{cases}1 & Z \in A \\ 0 & Z \notin A\end{cases}
$$

that is, I_{A} is the indicator random variable associated with the set A.
Does the sequence $\left\{X_{n}\right\}$ converge in any mode to any limit random variable ? Justify your answer.
3.* Suppose, for $n=1,2, \ldots, X_{n} \sim \operatorname{Bernoulli}\left(p_{n}\right)$ are a sequence of independent random variables where

$$
P\left[X_{n}=1\right]=p_{n}=\frac{1}{\sqrt{n}} .
$$

Does $P\left[X_{n}=1\right.$ infinitely often $]=1$? Justify your answer.

