MATH 556 - EXERCISES 6
 Not for Assessment.

1. Suppose that X_{1}, \ldots, X_{r} are independent random variables such that, for each $i, X_{i} \sim N\left(\mu_{i}, 1\right)$, for fixed constants μ_{1}, \ldots, μ_{r}.
(a) Find the mgf of random variable Y defined by

$$
Y=\sum_{i=1}^{r} X_{i}^{2} .
$$

(b) Find the skewness of Y, ς, where

$$
\varsigma=\frac{\mathbb{E}_{Y}\left[(Y-\mu)^{3}\right]}{\sigma^{3}}
$$

where μ and σ^{2} are the expectation and variance of f_{Y}.
2. Consider the three-level hierarchical model:

LEVEL 3: $\lambda>0, r \in\{1,2, \ldots\} \quad$ Fixed parameters
LEVEL 2 : $N \sim \operatorname{Poisson}(\lambda)$
LEVEL $1: \quad X \mid N=n \sim \operatorname{Gamma}(n+r / 2,1 / 2)$
Find
(a) The expectation of $X, \mathbb{E}_{X}[X]$,
(b) The mgf of $X, M_{X}(t)$.
3. Consider the three-level hierarchical model:

$$
\begin{array}{lll}
\text { LEVEL } 3: & \mu \in \mathbb{R}, \tau, \sigma>0 & \text { Fixed parameters } \\
\text { LEVEL } 2: & M \sim \operatorname{Normal}\left(\mu, \tau^{2}\right) & \\
\text { LEVEL 1 : } & X_{1}, X_{2} \mid M=m \sim \operatorname{Normal}\left(m, \sigma^{2}\right) &
\end{array}
$$

where X_{1} and X_{2} are conditionally independent given M, denoted

$$
X_{1} \perp X_{2} \mid M
$$

Using the law of iterated expectation, find the (marginal) covariance and correlation between X_{1} and X_{2}. Are X_{1} and X_{2} (marginally) independent? Justify your answer.
4. In a branching process model, the total number of individuals in successive generations are random variables $S_{0}, S_{1}, S_{2}, \ldots$. Suppose that, in the passage from generation i to generation $i+1$, each of the s_{i} individuals observed in generation i gives rise to $N_{i j}$ offspring for $j=1, \ldots, s_{i}$ according to a pmf with corresponding pgf G_{N}.
In addition to the production of offspring, suppose that at each generation, immigration into the population is allowed, and that at generation i, K_{i} new individuals enter the population to go forward to the $i+1$ st generation, so that

$$
S_{i+1}=\sum_{j=1}^{s_{i}} N_{i j}+K_{i}
$$

where $K_{0}, K_{1}, K_{2}, \ldots$ are iid random variables, with $\operatorname{pgf} G_{K}$, that are independent of all $N_{i j}$.
Find the pgf of S_{i+1} in terms of the pgf of random variable S_{i} and G_{K}.

