MATH 556 - EXERCISES 6

Not for Assessment.

- 1. Suppose that X_1, \ldots, X_r are independent random variables such that, for each $i, X_i \sim N(\mu_i, 1)$, for fixed constants μ_1, \ldots, μ_r .
 - (a) Find the mgf of random variable *Y* defined by

$$Y = \sum_{i=1}^{r} X_i^2.$$

(b) Find the skewness of Y, ς , where

$$\varsigma = \frac{\mathbb{E}_Y[(Y-\mu)^3]}{\sigma^3}$$

where μ and σ^2 are the expectation and variance of f_Y .

2. Consider the three-level hierarchical model:

LEVEL 3 : $\lambda > 0, r \in \{1, 2, ...\}$ Fixed parameters LEVEL 2 : $N \sim Poisson(\lambda)$ LEVEL 1 : $X|N = n \sim Gamma(n + r/2, 1/2)$

Find

- (a) The expectation of X, $\mathbb{E}_X[X]$,
- (b) The mgf of X, $M_X(t)$.
- 3. Consider the three-level hierarchical model:

LEVEL 3 : $\mu \in \mathbb{R}, \tau, \sigma > 0$ Fixed parameters LEVEL 2 : $M \sim Normal(\mu, \tau^2)$ LEVEL 1 : $X_1, X_2 | M = m \sim Normal(m, \sigma^2)$

where X_1 and X_2 are conditionally independent given M, denoted

$$X_1 \perp X_2 \mid M.$$

Using the law of iterated expectation, find the (marginal) covariance and correlation between X_1 and X_2 . Are X_1 and X_2 (marginally) independent? Justify your answer.

4. In a branching process model, the total number of individuals in successive generations are random variables S_0, S_1, S_2, \ldots . Suppose that, in the passage from generation *i* to generation *i* + 1, each of the s_i individuals observed in generation *i* gives rise to N_{ij} offspring for $j = 1, \ldots, s_i$ according to a pmf with corresponding pgf G_N .

In addition to the production of offspring, suppose that at each generation, immigration into the population is allowed, and that at generation i, K_i new individuals enter the population to go forward to the i + 1st generation, so that

$$S_{i+1} = \sum_{j=1}^{s_i} N_{ij} + K_i$$

where K_0, K_1, K_2, \ldots are iid random variables, with pgf G_K , that are independent of all N_{ij} .

Find the pgf of S_{i+1} in terms of the pgf of random variable S_i and G_K .